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1 Abstract
Mesoporous silica films offer exciting potential for the delivery of molecular
cargo, detection of molecular agents and as environment-dependent ’nano reac-
tors’ in biological systems. Fundamentally important to realizing this potential
are quantitative models for how the material topology, surface chemistry and
surface/solution interface govern molecular transport (via diffusion). Partial
differential equation (PDE)-based approaches are particularly well-suited for
reaction-diffusion processes in materials, given the ability to incorporate into the
simulation important details including material morphology, surface chemistry
and charge. However, two challenges that hinder the application of reaction-
diffusion partial differential equation (PDE)s to structurally-realistic models
of materials are 1) burdensome post-processing and annotation of microscopy
data needed for PDE solutions and 2) challenges in extrapolating model pre-
dictions determined at the nanoscale to heterogeneous materials. To address
this gap, we developed a new workflow for simulating ion reaction-adsorption-
diffusion in nanoporous silica-based materials that are resolved through elec-
tron microscopy. Firstly, we propose a matched filtering procedure to iden-
tify and segment unique porous regions of the material that will be subject
to PDE simulation. Secondly, we perform reaction-adsorption-diffusion PDE
simulations on representative material regions that are then applied to charac-
terize the entire microscopy-resolved film surface. Using this model, we examine
the capacity of a recently synthesized mesoporous film to tune small molecule
permeation through modulating the material permeability, surface chemistry
including buffering and adsorption, as well as electrolyte composition. Specif-
ically, we find that our proposed matched filtering approach reliably discrimi-
nates hexagonal close packed (HCP) porous regions (bulk) from characterized
defect regions in transmission electron microscopy (EM) data for nanoporous
silica films. Further, based on our implementation of a pH-/surface-chemistry
dependent Poisson-Nernst-Planck (PNP) model that is consistent with existing
experimental measurements of KCl and CaCl2 conductance, we characterize ion
and 5(6)-Carboxyfluorescein (CF) dye permeability in silica-based nanoporous
materials over a broad range of ionic strengths, pHs, and surface chemistries.
Using this protocol, we probe conditions for selectively tuning small molecule
permeability based on mesoporous film pore size, surface charge, ionic strength
and surface reactions in the rapid-equilibrium limit. Altogether, this framework
provides means to utilize and validate high resolution microscopy data of meso-
porous materials, from which spatially heterogeneous transport parameters can
be estimated. As such, the protocol will have significance for characterization
of new materials for wide ranging applications.

2 Introduction

2.1 Ion transport in mesoporous films and the impact of
defects

Mesoporous silica films have garnered considerable interest for applications to
separation chemistry, drug delivery, and biosensors1–4 owing to their tunable
control of ion mass transport processes within their highly-charged porous net-
works. In part, this precise tuning is afforded through the high density of
silanol groups on silica surfaces,5 which can support pH-dependent charge reg-
ulation and substrate adsorption in aqueous media.6,7 In turn, these surface
chemistry phenomena have been shown to modulate ion permeation and con-
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ductance, beyond estimations based on restricted diffusion or tortuosity alone.
Here electrostatic interactions play a profound role in modulating ion transport,
for which the ionic-strength determined electric double layer length scales are
on the same order as pore diameters. As a result, there is a rich set of physi-
cal phenomena that can emerge in these materials. For instance, two extremes
in background ionic strength give insight into the complex tug and pull gov-
erning ion transport. At low ionic strengths, potentials arising from surface
charges can extend significantly into the bulk fluid phase, where they strongly
dictate rates of electrodiffusion. At high ionic strengths, surface potentials are
largely attenuated, in which case transport is largely controlled by concentra-
tion gradients and differences in osmotic pressure.8–10 These phenomena have
been characterized in nanoporous ’slits’ and ’channels’, but have been less ex-
plored in nanoporous films with uniform ordered mesopores generated by liquid
hexagonal close packed (HCP) (mesocrystalline) templating.6,11–14

Diffusion-limited transport of small molecules in nanoscale media is sensi-
tive to material morphology, surface charges, the solution ionic strength and
physiochemical properties of the diffuser such as size and charge. Therefore,
a prominent challenge in assessing transport in mesoporous silica films is how
these contributions collectively control ion diffusion rates in perfectly-formed
porous regions, and the extent to which structural defects perturb these rates.
Among these, framework defects are among the most poorly understood factors
and are known to perturb substrate diffusivity and permeation in nanoscopic
materials.15 Framework defects in HCP (mesocrystalline)line materials share
many similarities with mesoporous films, and are categorized by their size as
micro (<20Å), macro (>500Å), and meso (intermediate),16 which include cracks
and holes representing the predominant macro-scale defects,16 while imperfect
mesoHCP (mesocrystalline) formation or intergrowth account for the major-
ity of meso- and micro-scale defects.17 Below 500Å, the most common struc-
tural defects include HCP (mesocrystalline) stacking faults resulting in merged
pores,18,19 inter-growth of different mesoHCP (mesocrystalline) forms20,21 and
hydroxyl (OH)-terminated surfaces22 (silanol nests). Thus, critical for eval-
uating and optimizing chemical processes in real materials is a fundamental
understanding of mass transport22–24 in both ordered (HCP (mesocrystalline))
and defect-containing mesophases.

2.2 Techniques for incorporating microscopy data into nanoscale
simulations

Transmission and scanning electron microscopy have become the standard imag-
ing modalities for probing the structural integrity of nanoporous media.25,26

Though considerable effort has been invested in characterizing prominent HCP
(mesocrystalline) defects in electron micrographs, less has been done to simu-
late the impact of representative defects on material transport and performance
properties. For instance, studies examining gas/liquid adsorption in nanoporous
silica with morphological defects have been reported based on molecular simula-
tions,27,28 but these were not explicitly linked macroscale transport phenomena.
It is our speculation that the abundance of defects and difficulty in translat-
ing these structural features to forms amenable to simulations have challenged
probing via simulation nanoscale transport phenomena in structurally-imperfect
nanoporous media. Here, advances in automated segmentation of electron mi-
croscopy data has the potential to ease the burden of manual identification and
characterization of material structural features, which could serve as the basis
for detailed substrate transport simulations. Recent examples include utiliz-
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ing image processing such as equalization, segmentation and Shannon entropy
to characterize porosity and other features in nanomaterials.29–32 Conversely,
techniques for reconstructing 3D structures from 2D EM slices are widely im-
plemented for investigating nanoparticle and nanocatalyst structures in complex
hieararchical arrangements.33,34

2.3 Modeling approaches for ionic transport in mesoporous
media

Computational models for estimating the extent to which defects impact nanoporous
material performance could improve material design, yet most approaches as-
sume perfectly ordered mesoporous materials. For perfect (defect-free) nanoporous
silica materials, a variety of simulation approaches have been developed to
characterize substrate adsorption and transport, including continuum, stochas-
tic methods such as Monte Carlo and molecular dynamics simulations (re-
viewed in35). While molecular simulations provide a powerful toolset for probing
atomic-level physical phenomena including local self-diffusion, hydration and
adsorption,36–38 continuum transport simulations constitute a multi-scale com-
plement to extrapolate nanoscale molecular-scale physiochemical information
to macroscopic phenomena occurring in nanoporous material.39–41 Among the
most successful models of ion transport at the continuum level is Poisson-Nernst-
Planck (PNP) theory, which is a continuum model of electrostatically-driven
ion diffusion coupled with ion-dependent electrostatic fields. Recent develop-
ments have augmented Poisson-Nernst-Planck (PNP) simulations to include pH-
regulated surface charge41 for modeling ion conductance in nanoporous materi-
als. Despite the wealth of simulation effort targeting nanoscale materials, how
ionic transport might vary in heterogeneous or defect-containing nanoporous
materials is under explored.

2.4 Paper Objectives

In this study, we have developed a workflow as a foundational step toward
imaging-informed, computational modeling of ion transport in mesoporous sil-
ica films with structural defects. This workflow (Fig. 1) enlists a computer vision
technique, matched filtering, to 1) discriminate HCP from defect-containing re-
gions from EM 2) performs partial differential equation simulations of electroki-
netic transport in 3D models of such regions, and 3) estimates heterogoneous
effective transport parameters in a given material. Step 1 utilizes matched filter-
ing to automatically detect mesocrystalline features for EM . In this procedure,
kernels representing such features are convolved against the data; the kernel
generating the maximal response above a user-defined signal-to-noise ratio is
used to annotate the region in the data. Step 2 the kernels developed for step 1
are converted into 3D meshes by projecting the 2D signature perpendicular to
plane to create a 3D pore. Step 3 A pH- and surface charge-dependent model
of electrolyte transport (PNP) partial differential equation is solved in the 3D
meshes using the finite element method, from which effective transport param-
eters such as conductivity and diffusion are calculated. Step 4 is to interpolate
the effective parameters from Step 3 onto the annotated regions determined in
Step 1. We applied this to a mesoporous silica film synthesized and character-
ized by Wooten et al42 (electron microscopy data in Fig. 3) as well as simulated
data to demonstrate the algorithm performance.

We demonstrate that our workflow for the first time automates electroki-
netic transport simulations in microscopy-derived, defect containing structural
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data of mesoporous films. Our proposed computer vision method demonstrates
reasonable accuracy in discriminating mesocrystalline (bulk) from defect regions
in transmission electron microscopy data and simulated data, thereby provid-
ing means to characterize the nature and prevalence of defects. Further, our
implementation of the pH-/surface-chemistry dependent PNP model is consis-
tent with experimental measurements of KCl and CaCl2 conductance in silica-
based nanochannels over a broad range of ionic strengths and pHs, delineating
regimes that permit simplified electrokinetic models. Without any additional
fitting, the model predicts permeation properties of an anionic dye CF in a
mesoporous film within experimental uncertainty. With this model, we predict
the degree to which defects in a mesoporous film influence permeation prop-
erties, the optimal conditions under which to make these variations apparent,
and conditions for selectively tuning small molecule permeability based on pore
size, charge and buffering. Overall, we envision that this model will provide
rigorous means to characterize high resolution microscopy data, from which
heterogeneous transport parameters can be estimated. Further, its basis as a
finite element model should permit its extension to wide-ranging material types,
including hierarchically-structured composite materials.

3 Methods
Our workflow for segmentation and PDE-based simulations of ion transport in
EM-resolved nanoporous media is shown in Fig. 1. Key stages of this workflow
include 1) automated unit cell feature detection in EM-characterized nanoporous
media (Sect. 3.1), 2) three-dimensional meshes based on the detected unit cells
(Sect. 3.2), 3) effective transport parameter estimation based on Poisson-Nernst-
Planck (PNP) simulations of ion transport within porous regions of each unit
cell (Sect. 3.3) 4) extrapolation of unit cell transport parameter estimates onto
the imaged material surface (Sect. 3.4).
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Figure 1: Workflow based on structural data from Wooten et al.:42 1)Matched
filter unit cell detection from EM data. 2) 3D geometries construction with
meshing. 3)PNP solved in representative unit cell geometries. 4) Interpolate
effective transport parameters for entire film from unit cells.
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3.1 Matched filter unit cell determination from segmen-
tation of bulk mesocrystal and defect EM data

We utilize ’matched filtering’ for the first stage of our workflow, in order to
assess the likelihood of a kernel representing a feature of interest is present in
a given data set. Consider a measurement, ~m, that consists of of a signal, ~s,
embedded in additive noise, ~n:

~m = ~s+ ~n, (1)

The goal of matched filtering is to identify a matched filter, ~h, that maximizes
the signal-to-noise ratio (SNR) for a measurement, ~m,43

y = ~hT ~m = ~hT~s+ ~hT~n, (2)

where ~hT denotes the filter’s transpose. It can be shown that the optimal
matched filter can be determined via

~h =
1√

~sTR−1
n ~s

R−1
n ~s, (3)

where Rn = E{nnT } represents the noise covariance matrix. In the event that
random variates are drawn from a mean-zero, Gaussian, white noise process
of variance, σ2, the noise covariance matrix reduces to Rv = σ2I, where I is
the identity matrix. Commonly, the signal or multiple instances thereof may
be embedded within a larger data set (r), such as an image. In which case,
determining the location of s within r is commonly performed by convolving
the kernel h with the image, r

Y = h ∗ r, (4)

Computationally, this is commonly done via the discrete Fourier transform,
given that

h ∗ r = F−1 [F [h] ·F [r]] , (5)

by the convolution theorem. Probable detections of the signal s within Y are
based on identifying positions, at which the SNR is above a user-specified thresh-
old criterion, λ,

SNR ≡ |~hT~s|
~hTσ2I~h

≥ λ, (6)

where σn represents the standard deviation of the noise.
In this study, we consider a 90nm thick mesoporous silica film with hexagonally-

packed, 5nm radius pores (see Fig. 2a) synthesized by Wooten et al,42 from
which the matched filters were determined. A representative transmission elec-
tron microscopy (TEM) image of the film is provided in Fig. S2, which was
collected at 68,000x magnification. These data reveal a preponderance of or-
dered hexagonally-packed pore regions with a small number of defects evident
as small linear features. It is speculated that the linear features represent pores
that became fused during the film preparation, thereby yielding a ’channel-like’
fused pore shown in Fig. 2b. Since the primary goal of the matched filtering
is to discriminate bulk regions from defect features, the underlying structure
corresponding to the linear feature in the EM is of little significance. Therefore,
here we determine the matched filter kernels, or ’filters’, based manually iden-
tifying representative bulk and ’fused pore’ regions in the EM data. We first
applied the python openCV ’Contrast Limited Adaptive Histogram Equal-
ization’ routine to equalize the pixel intensities across the image. After which,

7



the identified regions were subdivided into unit cells representing an instance of
the nanoporous feature. These subdivisions were averaged to attenuate uncor-
related background noise and reveal the consensus structures shown in Fig. 2,
which served as matched filters for each data feature. In our approach, we con-
sider multiple filters that represent different features in the EM data, as well as
rotations thereof in order to detect alternate orientations. Since the orientation
of the bulk hexagonally-packed regions and fused pore features vary across the
EM field of view, we created a bank of filter rotations for each matched filter
that were spaced at 10 degree increments. The correlation response for a given
image pixel, yij , was determined by taking the maximum response across all
rotated variants of a given filter. Given that the data considered in this study
contains signal (nanopores), noise that is not necessarily additive, and other fea-
tures in the EM data that are not represented by a given filter, h, we modified
our threshold criterion as follows

log
exp(~hi

T
~s)

σ2γ exp( ~hiC
T
~s)
≥ λi, (7)

where ~hiC represents the complement of matched filter i, ~hi, which we define as
~hiC = 1− ~hi. This complement penalizes signal that falls outside of the signal

signature defined in ~hi. We found this term was necessary to discriminate the
correlation outputs from the bulk and fused pore matched filters. We tested both
filters against two subsections of Fig. S2, a ’fused pore-rich’ region and a ’bulk-
like’ region (see bottom left panels of Fig. 3 and Fig. S3, respectively). Regions
of the test EM data that returned responses below the threshold parameters for
either filter are designated as ’uncharacterized.’ Details for selecting optimal
threshold parameters and corresponding receiver operator characteristic (ROC)
curves are provided in Sect. S.2.1. All aforementioned numerical procedures
were conducting using the python2.7 libraries numpy, scipy and openCV-
python.

3.2 Mesh generation from matched filter unit cells

Effective parameter estimation in the second stage of Fig. 1 is based on numer-
ical solution of the PNP equation via the finite element method in Sect. 3.3,
using 3D meshes informed from the segmented images. Unit cells determined
from our segmentation protocol provided a basis for generation of tetrahedral-
ized, finite element meshes via GMSH,44 for which the pore radii and spacings
were approximated from the segmented data. In principle, however, the seg-
mented data could be used directly for mesh generation.45 From these data, we
created ’extruded’ unit cells of length 90nm, which assumed the inner pores are
perpendicular to the EM-resolved film surface (Fig. 2). The MathEval and Box
field in GMSH were used for mesh refinement which ensures finer mesh near
nanopore walls. The extruded pores interfaced with two identical reservoirs to
represent contact with bulk solution. In principle, the reservoir size should be
significantly larger than the pore dimensions to minimize artifacts introduced
by the reservoir boundaries on the electrostatic potential adjacent to the silica
surfaces.46,47 In a recent study,48 it was demonstrated that more modestly sized
reservoirs on the order of 20 nm were sufficient to minimize these artifacts; here,
we set the reservoir depth(z direction) to be 40nm, while the width and length of
reservoir are shown as in Fig. 2. Meshes resembling ’nanochannel’ and ’nanoslit’
geometries were constructed in a similar fashion for the validations described
in this study (see Fig. S4). Moreover, we evaluate the conductivities near the
midpoint of the silica pores, which is expected to further reduce boundary arti-
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facts. In the Results section, we demonstrate good agreement with experimental
conductivity measurements, which suggests our choices of domain configuration
and conductance measurements (see Methods) were appropriate.

Figure 2: Two unit cells detected by our ”matched filter” method based on
the EM image of silica membrane fabricated by Wooten et al.42 The dimensions
of the unit cells were automatically determined by the segmentation procedure.
The corresponding 3D geometries (with meshing) generated by GMSH44 are
also shown. A) Hexagonal(bulk) unit cell. B) Fused pore unit cell.
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3.3 Effective transport parameter determination via finite
element solutions of the Poisson-Nernst-Plank trans-
port model

The mass transport of ions in a silica nanopore was described by the Poisson-
Nernst-Planck (PNP) equation. The Nernst-Planck (NP) equation describes
the ionic mass flux density of each ion species subject to concentration and
electric potential gradient. Meanwhile, the electric potential distribution within
the domain is determined by Poisson equation. These two equations are given
as:

−∇ · Ji = 0, (8)

Ji = −Di

(
∇ci +

ziFci
RT

∇φ
)
, (9)

−εrε0∇2φ = F
N∑

1=1

zici, (10)

Here, Ji, Di, ci, zi are flux density, diffusion coefficient, molar concentration,
and valence electron number of ith ionic species. F is the Faraday constant, φ
is electric potential, T is absolute temperature, and R is gas constant. ε0 and
εr are vacuum permittivity and the relative permittivity of the electrolyte solu-
tion, respectively. The boundary conditions are given as: 1) When evaluating
ionic conductance: at the both ends of the reservoir, ionic concentrations are
maintained at the bulk values (i.e., ci = ci,bulk) while potentials of φ = 0 and
φ = 0.2V are applied. 2) When evaluating effective diffusion constant/perme-
ability: at the both ends of the reservoir, electric potentials are set as 0 (i.e.,
φ = 0V ) while concentrations of ci = ci,bulk and ci = 0 are applied at either
end. 3)Within the nanopore, we apply a reflective boundary condition for the
ions (n ·Ji = 0). 4) A Neumann condition on the potential is also applied based
on the silica surface charge density:

−∇φ · n = σs/(εoεr), (11)

n is the unit outer normal vector.

3.3.1 Surface protonation and K+/Ca2+ surface adsorption

Recently, the Qian group and their collaborators have conducted a series of nu-
merical electrodiffusion simulations based on silica nanochannel geometries.6,13,49

These models assumed four ionic species, H+,OH–,Cl– and K+, as well as silanol
(SiOH) protonation:

Si OH Si O– + H+, (12)

Si OH + H+ Si OH
+

2 , (13)

The inclusion of the pH-dependent regulation of surface charge density in the
PNP model was found to give superior agreement with experimental measure-
ments of KCl conduction at non-neutral pH. More importantly, their results
indirectly demonstrate that metal adsorption between the monovalent cations
(e.g., K+) and the channel wall silanol groups is negligible,50,51 as their PNP
model was sufficient to recapitulate experimental results without considering
K+ adsorption. For divalent cations such as Ca2+, adsorption onto the silica
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surface is believed to be significant.50,52,53 This motivated a site-binding model
for divalent cation adsorption that appeared most consistent with experimental
data among several reaction possibilities.50

Si OH + Ca2+ Si OCa+ + H+, (14)

The corresponding equilibrium constants of the (de)protonation and Ca2+ ad-
sorption reactions are thus given by

Ka1 =
ηSiO− [H+]s
ηSiOH

, (15)

Ka2 =
ηSiOH+

2

ηSiOH [H+]s
, (16)

Km =
ηSiOCa+ [H+]s
ηSiOH [Ca2+]s

, (17)

where ηi is the surface site density of the ith functional group. [H+]s and [Ca2+]s
are the surface molar concentrations of corresponding ions. To our knowledge,
however, pH regulation and Ca2+ adsorption have not been used for modeling
electrokinetic phenomena. Thus we combined models for protonation54 and
Ca2+ adsorption,50 for which the total density of sites on the silica surface that
can support chemical reactions is given by

ηTotal = ηSiOH + ηSiO− + ηSiOH+
2

+ ηSiOCa+ , (18)

From this equation, the effective surface charge density can be determined by

σs = −FηTotal
Ka1 −Ka2[H+]2 −Km[Ca2+]

Ka1 + [H+] +Ka2[H+]2 +Km[Ca2+]
, (19)

Eq. 19 serves is used in the Neumann condition definied in Eq. 11. Additional
parameters for the model are provided in Table S1.

3.3.2 Finite element solution of PNP equations

The Poisson-Nernst-Planck (PNP) equations in the present study were nu-
merically solved via the finite element method (FEM) using the commercial
finite-element COMSOL (www.comsol.com) package and the free open-source
FEniCS55 library. For all two dimensional (2D) geometries we considered (see
Fig. S4), the PNP equations were solved by COMSOL with full pH-/adsorption
regulated surface charge density to ensure consistency with prior studies of ion
conductance in nanomaterials.6,56,57 For computational expenses reasons, we
utilized the finite element method (FEM) package FEniCS to solve the PNP
equations, assuming first order Lagrange bases and default solver parameters.
To simplify the boundary conditions, the Grahame equation was used to relate
the surface charge density to the electric potential at the silica wall, which for
a monovalent salt is given by

σs(φ0) =
√

8c0εoεrkBT sinh

(
eφ0

2kBT

)
, (20)

where φ0 is the electric potential at the pore surface (for divalent salt, e.g.,
CaCl2, the corresponding Grahame equation is given as Eq. S1).54
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3.3.3 Conductivities and permeabilities of unit cells and bulk mate-
rial

For numerical estimation of the KCl ionic conductance in nanoporous media,
we evaluated the following conductance relationship proposed by Yeh et al:6

S =
I

δV
=

F 〈J〉Γ
Va − Vb

, (21)

〈J〉Γ ≡
N∑
i=1

∫
Γ

J(Γ)idΓ, (22)

where Ji, the flux density for species i, is computed from steady-state solu-
tions to Eq. 8, Va and Vb are the average electric potentials at the two ends
of nanopore (Va − Vb value is close to applied potential bias δφ = 0.2V , see
Table S2), N is number of ion species, F is Faraday’s constant, Γ is the cross-
sectional surface within the nanopore center. The flux density was either pro-
vided directly from COMSOL or estimated from FEniCS steady-state solutions
using Paraview.58 For the CaCl2 conductance in a nanochannel (length=5mm,
width=30µm and Height=18nm52), we utilized a 2D model represented, given
that width� height. We assumed Gfinal = GslitW10−4, where Gslit is the
ionic conductance of the 2D nanoslit, W is the width of the 3D nanochannel.
The division by 1.0000× 104 reflects that our simulated domain was of length
5× 10−7 m versus the 5× 10−3 m channel used in Feust et al;52 despite this
approximation, we found reasonable agreement between our predictions and
experimental data.

Similarly, the membrane permeability, Peff, and effective diffusion constant,

Deff, were evaluated as:59,60

Pi =
KiDi,eff

Lm
(23)

Di,eff =
〈Ji〉Lx
[i]bulk

(24)

where Ki and Di,eff are the partition coefficient and effective diffusion constant

of each species in membrane, respectively. Lm is the thickness of membrane,
〈Ji〉 is the average flux density over the cross-section area at the middle of mem-
brane(calculated in the same way as Va and Vb evaluations mentioned above),
Lx is the length along diffusion direction(defined as the distance between the
external ends of two reservoirs) and [i]bulk is the bulk concentration. The value
of KCF in silica membrane is assumed to be 1× 10−3 , which lies in the range
of small organic molecules.59

3.4 Extrapolation of effective conductivity estimates on
EM-imaging data

In the final step, partial differential equation predictions of effective transport
parameters are extrapolated onto the original EM-resolved structure. Given
that each filter ’hit’ represents a match for an entire unit cell, we the transport
parameter estimated for the corresponding filter to a region commensurate in
size to the unit cell. In regions that did not contain an obvious filter match, we
assigned a permeation value that was intermediate to the fused and bulk pore
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unit cells, as the unclassified regions still presented porous features that could
permit substrate diffusion. In this case, the effective permeation, Peff, for the
entire material surface is determined by a surface area-weighted (Γ) average of
the parameters determined for the different unit cell types, e.g.

Peff =
1

Γtot

∑
i

Γisi (25)

where i corresponds to the fused pore, bulk and unclassified regions.

4 Results and Discussion

4.1 Automated feature detection and mesh generation for
oriented porous films

4.1.1 Application to EM-derived nanofilm data

A key contribution from our workflow presented in Fig. 1 is the automated
detection of prominent structural features in imaged nanoporous films. In the
Methods section, we outlined our procedure for generating matched filters repre-
sentative of bulk (hexagonal closed packed) regions and fused pore defects. We
note that the postulated fused pore is one of several types of defects evident in
the data and that additional matched filters would be required to detect those
features. However, given the lack of data for adequately training the matched
filters for each defect type, we limit our approach to fused pores, which are some-
what prevalent in the EM image (Fig. 3B). Here we tested the performance of
these data-derived filters on subsections of the raw EM data that were not used
for filter training. Namely, in Fig. 3 we present a roughly 100nm by 100nm re-
gion that contains diagonal striations that we attribute to fused pore features.
In the top two rows of Fig. 3, we show the rotated filters (left column) as well
as the corresponding matched filter outputs (right column) for the fused pore
filter. In the bottom row we denote the raw data used for the feature detec-
tion, as well as the above-threshold regions from all pore rotations indicated in
red or green for the bulk and defect filters, respectively. Analogous results are
presented for EM data that predominantly contain bulk (HCP) surface features
in Fig. S3. The marked results in Fig. 3 and Fig. S3 suggest that the matched
filtering protocol is able to detect and classify the bulk and fused pore features,
though exact quantification of the accuracy is difficult given the resolution of
the EM data. We note that there are several regions in the image that were
not classified by either filter. By visual inspection, those regions present sur-
face features that neither appear fused nor adhere to an HCP configuration.
In principle, these unclassified regions could be used to train additional filters
to facilitate complete characterization of the EM surface. We also found that
tuning the threshold parameters was necessary to optimize the matched filtering
results. Nevertheless, these data indicate 1) that filter rotation in ten degree
increments is sufficient to reliably identify data features independent of their
orientation and 2) that bulk and fused pore defect regions can be automatically
detected in the raw test data.
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Figure 3: Matched filtering results for simulated transmission electron
microscopy (TEM) images of a mesoporous silica film from Wooten et al.42 First
and second rows correspond to the filters and corresponding matched filtering
result at 0 and 30 degree rotations. Bottom row provides the raw data and an
image denoting match filter detected fused pore (green) and bulk unit cell (red)
features. Similar results are presented in Fig. S3, using raw data containing
mostly bulk unit cell features .
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4.2 Electrokinetic model of transport in oriented meso-
porous films and other porous media

4.2.1 KCl conductance in mesoporous silica.

The intermediate stages of the Fig. 1 workflow entails estimation of effective
transport parameters including conductivity( Seff) and effective diffusivities(Deff)
or permeabilities(Peff) for ionic species, given 3D representations of the porous
features identified in the EM film data. These features include a perfectly cylin-
drical pore corresponding to the HCP bulk unit cell (Fig. 2A) and a ’slit-like’
geometry representing fused pores that traverse the entire film depth (Fig. 2B).
The dimensions of the two unit cells were determined by the segmentation pro-
cedure. The length and width of hexagonal unit cell were determined to be
31nm and 16nm and four one-half nanopores centered on each edge, for which
each pore has a radius of 5nm. The length of fused pore unit cell was set to
30nm, while the width consisting of a 15nm slit formed by the fusion of two
pores (represented by two red circles in Fig. 2B) centered between two 13.5nm
wide impermeable regions. While the fused pore feature in principle could re-
flect a cylindrical pore oriented parallel to the film surface, it would not conduct
ions traversing perpendicular to the film thus we do not explicitly consider this
morphology.

A focal point of this section is the validation of our implemented model
against several experimental assays of electrolyte conductance in nanochannels
or nanoslits,7,52 in order to establish confidence in its application to a distinctly
different morphology: mesoporous films. In this section, we describe the com-
putational modeling of KCl and CaCl2 diffusion in several nanoporous silica
morphologies, as well as nanochannels and nanoslits previously characterized in
the literature.7,52 We additionally consider mesoporous silica films synthesized
and characterized by Wooten et al.42 All systems are modeled subject to volt-
age gradients or concentration gradients for measuring conductance or diffusion
properties, respectively, under a broad range of ionic strengths. In concurrence
with prior studies,6,8,56,57 we describe the electrokinetic mass transport using
the PNP model under steady-state conditions, whereby the electrostatic field
(φ) and electro-diffusion of electrolytes are coupled and solved simultaneously
(Eq. 8). We further include reaction terms reflecting proton and metal equi-
libria with the silanol-terminated silica surface (Eq. 12 and Eq. 14), which to-
gether determine the surface charge density governing the PNP model (Eq. 19).
While prior computational studies have characterized aspects of conductance in
nanochannels and nanoslits,6,57 in this study we examine such transport phe-
nomena in defect-containing mesoporous silica films.

The pH-dependence of surface charge has been well-described in prior works,6–8

and we include in Supplemental Section Sect. S.2.3 a validation of our model
against an established theoretical model of pH-dependent surface charge den-
sity.54 Namely, we verify that the negative surface charge of silica is reduced
from −115C/m2 expected at [KCl] = 1M upon protonation with decreasing
pH. Moreover, the extent of charge neutralization 1) decreases with increas-
ing ionic strength of the background electrolyte KCl, and 2) these trends are
comparable for film surfaces (planar) as well as film pores.

Using the validated pH-dependent PNP model, we predicted the conduc-
tance of a KCl solution (H+, OH–, K+ and Cl–) through a single 34nm nanopore
of radius 5.1nm at pH=7.5 and pH=5, assuming a 2D axially-symmetric domain.
These conditions mirror those considered by Yeh et al,6 although their model
additionally included a modified Stokes component to capture electrosmotic
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flow. Consistent with experimental measurements from Smeet et al7 and Yeh
el al,6 the model predicts that conductance scales with concentration at higher
ionic strengths, as the electric potential of the channel walls are largely shielded
by short Debye lengths. We note that while the Smeets et al7 study reports
findings based on a roughly neutral pH, we found that pH=5 was necessary to
recapitulate those findings, and further, the conductance data resemble those
from a related experiment conducted at pH=5.8 In Fig. S10, we additionally
demonstrate that the addition of electrosmotic effects by way of Stokes as done
by Yeh et al6 has a negligible impact on the conductance results, which supports
our omission of osmotic flow from our simulations. Regardless of pH, the pre-
dicted conductance data show similar declines in conductance from 1× 10−3 to
1M, which suggests that the contribution of surface charge is negligible at higher
ionic strengths. In other words, the channel flux is largely dependent on the
applied field parallel to the channel and that electrostatic interactions within
the channel are of little consequence under these conditions. At lower ionic
strengths, conductance is dictated by surface charge owing to the overlapping
of electric double layers, however the pH mitigates this effect by attenuating
the net negative charge of the boundary. We found analogous trends for a 3D
nanopore domain the HCP unit cell assuming a fixed (pH independent) surface
charge.

The change in conductance can be rationalized based on the fluxes of each
ionic species, which arise due to concentration gradients (first term in the right
hand side of Eq. 8) and electro-diffusion (second term of Eq. 8). For the latter
of which, the amplitude decreases as a function of concentration (see Fig. S5),
which ultimately determines the overall conductance. It is worth noting that
the effect of the potential gradient along the pore wall on ion diffusion is akin to
widening or constricting the pore radius for counter- or co-ions, respectively.
This is apparent from the data in Table S3, for which we provide species-
dependent flux densities and ionic conductances for different surface charge po-
tentials at κD = 1.06 and 3.35, assuming [KCl] = 1mM or 10mM for the 10.2nm
diameter (D) nanopore. These data reflect that increasing the magnitude of the
negative wall potential increases K+ flux by about 60% while decreasing Cl– by
50%, leading to an overall increase in conductance of 50%. Further, increasing
ionic strength supports ten-fold increases in K+ and Cl– fluxes, giving a five fold
increase in conductance overall.
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Figure 4: KCl ionic conductance in a nanopore. A) Comparison between
experimental data and numerical results. For the 2D axisymmetric pore, the
full PNP pH/adsorption model was used while for the 3D nanopore, the PNP
was solved with fixed electric potential (values are from 2D results) applied at
nanopore wall. Black symbols designate experimental KCl conductance data
for a 34 nm silica nanopore of radius 5.1 nm (pH=7.5) from.7 B) Ionic conduc-
tance of nanopore (2D axisymmetric, pH=7.5) at varying radiis and bulk [KCl]
(expressed as κD, D=10.2nm is the diameter of nanopore) .
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Interestingly, when these conductance data are represented as a function of
the dimensionless parameter κD, the trends scales as log(S) versus log(κD), as
shown in Fig. 4B. This trend is observed both when ionic strength is varied
from 1× 10−2 to 80mM for fixed pore radii (4-12 nm), as well as when radii
are varied for a fixed ionic strength. The latter variation supports the notion
that the presence of surface charge on the pore boundary essentially modulates
the effective pore diameter. Note that this κD dependence breaks down for
variable (e.g. pH-dependent) surface charges at low ionic strength (κ→ 0). We
anticipate that this behavior depend on the assumed surface potential, based
on analyses in Sect. S.4 that demonstrate predicted conductances smoothly
decrease as the negative wall potential was varied toward positive potentials.

4.2.2 CaCl2 transport and adsorption

In the preceding section, we demonstrated agreement between numerical predic-
tions of KCl conductance in several nanoporous geometries, for which the surface
charge is dependent on pH but independent of K+. We now consider the extent
to which an adsorbable ion can compete with protonation and thereby influ-
ence ion conduction. Specifically, we consider Ca2+ adsorption to the surface,
which has been shown to be significant8,52 and a necessary factor in conduc-
tance models to recapitulate experimental data7,61 Accordingly, we include in
Eq. 19 Ca2+ surface adsorption, assuming equilibrium constants in the micromo-
lar range. For validating the CaCl2 model, we refer to CaCl2 ionic conductance
data collected from a ’nanoslit’ with a length of 5mm, width of 30µm and height
of 18nm, respectively (Fuest et al52). Here we assume a 2D domain in Carte-
sian space (length versus height), given that the width is much greater than the
height. Further, since at steady state the ionic conductance of a nanochannel
is inversely proportional to the length of the nanochannel,62 we assumed a slit
length of 500 nm instead of 5 mm for reasons of computational expense(Fig. S4).
The simulation domain in this example contains four ion species: H+,OH–,Ca2+

and Cl–.
Simulated and experimentally-measured conductances are reported in Fig. 5

for PNP models with and without Ca2+ adsorption. Analogous to our simu-
lations for KCl, at low pH (pH = 5), we note that conductance (in log units)
decreases linearly with log [CaCl2] for calcium chloride concentrations of 1 mM
and higher, in agreement with experiment. Since the conductivities predicted
among the surface charge models were comparable, it is expected that the pH
and Ca2+ do not significantly modulate the surface change density for CaCl2
above 1 mM. As the concentration is decreased below 1 mM, however, the rate of
decrease in conductance slows and approaches a minimum at approximately 100
µM , below which conductance accelerates with decreasing ionic strength. This
is attributed to the fact that at low ionic strength, protons are more effective
in neutralizing wall charge. Both the pH and pH+Ca-dependent surface charge
models capture this behavior to an appreciable degree, although they do not cap-
ture the magnitude of the conductance increases exhibited in the experimental
data. We attribute this discrepancy in part to the uncertainty in the parameters
ηtotal, pKa, pKb and pKm. We attribute the experimentally-observed trends at
low ionic strength to the increased involvement of pH in regulating the surface
potential, as discussed in.53,63 Namely, as the ionic strength of the solution is
decreased, protons have a higher tendency to be attracted to the negatively
charged slit walls, upon which they neutralize the negative wall charge.
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Figure 5: Comparison of CaCl2 ionic conductance between numerical and
experimental data. The length(L), with(W) and height(H) of the nanochannel
are L=5mm, W=30µm and H=18nm, respectively.52(A)Experimental and nu-
merical conductance as a function of [CaCl2]. PNP+pH: pH regulated surface
charge density. PNP+pH+Ca: pH regulated surface charge density plus Ca2+

adsorption. (B) Effective diffusion constant of Ca2+ and Cl– versus [CaCl2] (ex-
pressed as κH, H=18nm is the height of nanochannel/nanoslit) under different
Ca2+ adsorption constants and pHs. The inset denotes the effective diffusion
constant at varying nanoslit heights when no surface charge density present.
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Apparent from these data is that Ca2+ adsorption has an insignificant contri-
bution to the conductance, except at basic pHs. Accounting for Ca2+ adsorption
decreases the conductance modestly relative to the basic PNP+pH model. To
rationalize this behavior, in Fig. 5B we present effective diffusion constants for
Ca2+ and Cl–as functions of ionic strength, pH and adsorption equilibrium con-
stants. At high ionic strength, Deff s for both ions approach limits predicted
for neutral pores, with Cl– presenting 20% of its bulk diffusion rate compared
to about 10% for Ca2+. As the ionic strength is reduced, the Cl– Deff declines

to nearly negligible values at [CaCl2]=1× 10−6 M, while that of Ca2+ increases
by nearly eight-fold, hence in this regime the current predominantly arises due
to cation flux. Further, these trends are modestly attenuated as pKm is re-
duced at basic pH to reflect increased Ca2+ adsorption, as the adsorbed Ca2+

ions partially neutralize the attractive, negative silica wall surface charge that
would otherwise facilitate Ca2+ diffusion. Under acidic conditions, this distinc-
tion is lost as there are fewer sites available to accommodate Ca2+ relative to
protons. Hence, the drop in conductance shown in Fig. 5 could be attributed
to a reduction in the Ca2+ Deff as Ca2+ surface binding increases. We empha-

size here that our model of Ca2+ adsorption only modulates surface charge and
therefore neglects changes to the free Ca2+ in the channel interior. We justify
this assumption by noting that adsorbed Ca2+ comprises a small percentage of
the total Ca2+ in the nanopore, given the large nanopore radius relative to the
adsorption layer (see Sect. S.4.1).

4.3 Small charged molecule permeation properties of a
mesoporous silica film

4.3.1 Validation of PNP model for CF permeation in silica film

In the previous sections, implementations of the PNP equations were validated
against experiment and simulation studies for several nanoporous silicate ge-
ometries. Here we utilize PNP simulations to explore permeation properties of
small ligands in a oriented mesoporous film,42 for which TEM provides a dis-
tribution of bulk and defect features (Fig. 3b) A key difference between these
geometries and those considered in the prior sections is that the porous silica
membranes here present a multitude of densely packed pores. We first vali-
date our model by simulating permeation properties of 5(6)-Carboxyfluorescein
(CF) in the Wooten et al42 membranes. Based on their experimental setup,
the length (thickness of membrane) and radius of the nanopore is set as 90nm
and 5nm, respectively. The pH is set as 7.4 (all CF numerical simulations were
conducted at pH=7.4 unless otherwise stated) and background [KCl] is set as
0.9M to mimic the ionic strength (0.9M, κD=31.8) in experimental setup. At
this basic pH, CF is expected to form the anion CF– (pKa=6.5) and thus we do
not anticipate adsorption of the small molecule. Our model consists of five ionic
species H+,OH–,Cl–,K+ and CF–, for which we assume an absorbing boundary
condition for CF on one reservoir edge (e.g. [CF]=0).

As shown in Fig. 3B, although the nanopores are mainly in hexagonal pack-
ing arrangement, structural defects such as fused nanopores are evident. To
resemble the real membrane composition, we thus consider two unit cell struc-
tures appeared in the TEM image: a hexagonal unit cell and a fused pore unit
cell (dimensions are shown as in Fig. 2). The permeabilities of CF for these two
unit structures were predicted to be 1.12× 10−6 m/s and 1.185× 10−6 m/s, re-
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spectively (see Fig. S13) and modestly less than the experimentally-determined
value of approximately 1.4× 10−6 m/s.42 Not unexpectedly, the difference in the
unit cell permeabilities can be explained by the relative porosities (see Fig. S14),
with the fused pore have a greater cross-sectional area than the HCP cell (0.357
and 0.317, respectively). Unlike in Fig. S13, for which we used a background
ionic strength as 0.9M to mimic the experimental setup in Wooten et al,42 here
we used a range of dilute ionic strengths. The motivation for dilute conditions
is two-fold: 1) high ionic strength has a strong electrostatic screening effect
which undermines the influence of wall electric potential on CF permeation
and 2) it has been shown surface charge density/electric potential begins to
dominate ionic transport when bulk concentration is smaller that 1mM.52 As
shown in Fig. 6, for a fixed surface potential, both hexagonal and fused pore
unit cells present larger CF permeabilities as ionic strength is increased. The
increase with log(κD) plateaus when the Debye length is much small smaller
than D, under which case the permeability is nearly completely determined by
the pore diameter. These permeabilities indicate that the higher background
ionic strength attenuates the repulsive interaction between anionic CF and the
negatively-charged nanopore wall, thus leading a larger CF permeation. Anal-
ogously, for a given ionic strength, decreasing the magnitude of the electric
potential permits greater CF permeability. These effects become more apparent
as ionic strength is reduced, and moreover, the differences in permeabilities for
the respective unit cells magnify.
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Figure 6: Permeability of CF in hexagonal and fused pore unit cells vs.
κD (D=10nm is the diameter of pore) under different wall electric potentials
when pH=7.4 and [CF]=1mM. The two straight dashed lines denote predicted
CF permeabilities under 900mM background ionic strength (κD = 31.18, see
Fig. S13 for details) .
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Case S.A. (%) Peff
Bulk Fused Uncharacterized

Fused pore-rich 0.05 88.9 0.06 6.0× 10−1 µm s−1

Bulk-like 0.28 0.44 0.28 5.5× 10−1 µm s−1

Exp 1.4 µm s−1

Table 1: Effective permeabilities, Peff, for the fused pore-rich and bulk-like
regions of Fig. S2, as computed by Eq. 25. Predicted conductivities for bulk
and fused unit cells are from Fig. 6 and their surface area weights are estimated
from matched filter detections in Fig. 3 and Fig. S3.

In support of the final step of the work flow in Fig. 1, we interpolate these
permeability predictions for the fused pore (6.2× 10−1 µm s−1) and the bulk
HCP pore (4.5× 10−1 µm s−1) unit cells onto the matched filtered data from
Fig. 3. Since the matched filtering provides a quantitative means of estimating
the propensity of detected defects relative to bulk, the effective permeability of
the entire EM film can be approximated by surface area-weighted conductivities
of the corresponding unit cells. While in principle the conductivities between
adjacent unit cells could be coupled and thus disfavor this simple extrapolation
approach, given the modest surface potentials we assumed that the conductiv-
ity of a given unit cell was independent of its neighbors. In Table 4.3.1 we
summarize these data for the fused pore-rich and bulk-like regions. The fused
pore-rich region presents roughly 90% fractional surface area attributed to fused
pore unit cells, thus the Peff of 6× 10−1 µm s−1 approaches Peff predicted for
a single fused pore. For the bulk-like region, the surface area was split be-
tween bulk-like, fused pore, and uncharacterized unit cells, and thus yielded an
intermediate Peff of 5.5 µm s−1. Surprisingly, the bulk-like unit cells did not
contribute the majority of the surface, but instead, a significant percentage was
unclassified despite resembling the bulk HCP form by visual inspection. Upon
investigating the correlation outputs corresponding to the unclassified cells, we
found that relative spacing between pores were dilated, which arguably led to
a reduced overlap of the HCP pore filter. We anticipate that augmenting the
rotated filter bank with dilations and contractions of the ’typical’ unit cell could
potentially improve detection for such cases.

4.3.2 Exploiting surface interactions to tune permeation rates

Factors controlling CF permeation In this section, we examine how CF
permeation can be controlled by ionic strength, nanopore wall surface charge
density, electric potential and selective CF binding. In Fig. 7 we demonstrate
ion permeabilities as a function of ion size and ion/wall electrostatic interaction
energy. Not surprisingly, the permeability decreases with effective pore radius,
which represents the difference between the actual pore radius and that radius
of a permeant ion (e.g. reff = rpore − rion). In other words, as the ion size is
increased, the effective pore radius decreases and smaller permeabilities result.
We note that as the ion size approaches that of the pore, additional factors
would likely have to be added to the model to accurately model the ion/wall
interactions, including hydrodynamic interactions and potential changes in local
diffusivity.64 Similarly, increasing the repulsive interaction energy decreases per-
meability, while attractive energies increase permeation. The effects of electro-
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static interactions attenuate with increasing ionic strength, as shown for CaCl2
effective diffusion rates in Fig. 5b.

As shown in Fig. 7B, at modest ionic strengths (100 mM), the capacity to
modulate ion transport by charge is diminished, as the predicted permeabilities
at 100 mM are constant across the range of electrostatic interaction energies
considered, compared to the 1 mM data. If instead one modified the surface
chemistry to selectively bind a substrate, the loss in electrostatically-driven se-
lectivity commonly observed at higher loadings (ionic strength)65 could be cir-
cumvented. We illustrate this by assuming there exists a buffer that selectively
binds CF, which in principle could arise through adding appropriate functional
groups to the silica surface or tethering a binding agent to the pore wall.66,67

For simplicity, we assume rapid equilibrium for this potential reaction, that is,
the binding/dissociation between CF and buffer occur more rapidly than the
timescale of diffusion. Under this limit, the local diffusivity of CF in the buffer
region (Dbuffer) can be described by:68

Dbuffer = Dfree

(
1 +

Ks[B]

(Ks + [CF ])2

)−1

(26)

where Ks is the dissociation constant, [B] is concentration of buffer and Dfree

is the diffusion constant without any buffer. We model the effects of this rapid
equilibrium by altering the local diffusion constant used in the PNP equation
(Eq. 8), which effectively reduces the net flux with increasing buffer concentra-
tion and CF binding affinity. As shown in Fig. 7B, a buffer concentration [B]=
1mM (comparable to [CF]), the permeability is reduced by 6.27% compared to
the absence of buffer. As [B] is increased to 10mM and 100mM, the perme-
ability is further reduced to 27.6% and 39.0%, respectively. Overall, these data
suggest that considerable flexibility in tuning permeation properties in these
mesoporous films may be realized, though exploiting combinations of altered
pore sizes,69,70 tuning ionic strength/loading rates,69 or introducing ion-specific
surface chemistry.67,71
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Figure 7: A) Numerically simulated CF permeability in hexagonal unit cell as
a function of electrostatic interaction energies and pore radiis. Background ionic
strength and bulk [CF] are both set as 1mM. B) CF permeability at fixed pore
radii (2.5nm) and fixed electrostatic interaction energy (1kT) under different
background ionic strength. Red lines denote CF permeability when a 1nm thick
buffer layer present along the inner wall of pore, the local diffusion constant of
CF is given as Eq. 26 where Ks is assumed to be 1. The dots, dashed and solid
red lines depict buffer concentration [B]=1mM, 10mM and 100mM, respectively.
.
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5 Conclusions
In this study, we have developed and explored the utility of a workflow for au-
tomatically characterizing EM microscopy data of mesoporous silica films and
performing detailed ion transport simulations of both bulk and defect mesocrys-
talline features. A primary innovation in this method is the use of a matched
filter approach to robustly detect known features in electron microscopy data.
The procedure relies of a bank of filters for which the EM signature of a given
defect is known, as well as rotated versions of those filters. Our results demon-
strate that both bulk and fused features could be determined with high selectiv-
ity. We emphasize that our matched filtering approach is rather simple, but can
be easily extended to incorporate sundry developments in matched filter theory
to improve the accuracy and reliability of detecting diverse signals in EM data.

To simulate ion transport in these silica-based materials, we implemented
a PNP model that includes pH and Ca2+ adsorption regulation of pore charge
density. Our models confirm that electrolyte conductance in mesoporous sil-
ica films is dependent on ionic strength, surface charge, pH, and adsorption
kinetics, as has been already demonstrated for single nanoporous channels and
slits. Under some conditions, the effects of ionic strength on transport can be
described as an effective pore radius that reflects the solution Debye length.
We extended these simulations to include a small molecule, CF, and identified
parameters under which CF transport could be optimized through variation of
porosity, surface charge and selective CF binding. In our approach, we assumed
a rapidly-equilibrating buffering zone, that notably reduced the apparent diffu-
sion coefficient of the selected-for ion, thus leading to smaller transport proper-
ties. Lastly, we leveraged simulation results of representative unit cells derived
from the EM microscopy data to estimate effective CF permeation rate for the
mesoporous silica membrane surface. Overall, the workflow in Fig. 1 that we
establish in this study and validate, where possible, has strong potential to ben-
efit the characterization of effective transport properties in increasingly complex
composite materials, including those with hierarchical degrees of structures, and
especially materials significant incidents of defects that perturb substrate diffu-
sion.
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S Supplement

Table S1: Basic parameters used in the PNP simulation

Parameters[units] Value Description

εo [F m−1] 8.854 187× 10−12 Vacuum Permittivity
εr 78.5 Relative Permittivity
F [C mol−1] 96485 Faraday constant
T [K] 298 Temperature
DH [m2 s−1] 9.31× 10−9 Diffusion constant of H+72

DOH [m2 s−1] 5.30× 10−9 Diffusion constant of OH–72

DCF [m2 s−1] 4.14× 10−10 Diffusion constant of 5(6)-Carboxyfluorescein42

DCl [m2 s−1] 2.03× 10−9 Diffusion constant of Cl–72

DCa [m2 s−1] 1.10× 10−9 Diffusion constant of Ca2+73

DK [m2 s−1] 1.96× 10−9 Diffusion constant of K+72

pKa 7.0 Equilibrium constant of reaction 372

pKb 1.9 Equilibrium constant of reaction 472

pKm 6.5 Ca2+ adsorption equilibrium constant (Eq. 19)5

ηTotal [mol m−2] 1.33× 10−5 Total density of silica functional group8,72

S.1 Supplemental figures

Table S2: Average electric potentials calculated at the two ends of nanopore
(see Eq. 21) in KCl conductance validation(2D-axisymmetric)

[KCl] Va(V ) Vb(V ) Va − Vb(V ) Va−Vb

δφ

1× 10−6 M 0.192929 -0.002049 0.194978 97.489%
1× 10−5 M 0.194460 0.000472 0.193988 96.994%
1× 10−4 M 0.196105 0.002011 0.194094 97.047%
1× 10−3 M 0.197282 0.001943 0.195339 97.670%
1× 10−2 M 0.198244 0.001437 0.196807 98.404%
1× 10−1 M 0.198898 0.001008 0.19789 98.945%
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Table S3: Flux densities and ionic conductance corresponds to Fig. S5. Setting
[KCl] = 1mM and 10mM results in κD = 1.06 and 3.35, respectively (D =
10.2nm is the diameter of nanopore). In Table S3 we show that increasing
negative wall charge increases K+ flux by about 60%, decreases Cl– by 50%,
leading to an overall increase in conductance of 50%. Further, increasing ionic
strength supports a 10-fold increase in K+, 10 fold increase in Cl–, and 5 fold
increase in conductance overall.

Electric Potential (mV) κD Flux density (mol/m2 · s) Conductance(S)

JK JCl JH JOH

φ = -10
1.06 -0.258 0.034 -0.013 8.77× 10−8 2.028× 10−10

3.35 -2.024 0.44 -0.0096 1.17× 10−7 1.053× 10−9

φ = -30 1.06 -0.398 0.0177 -0.0189 4.57× 10−8 2.978× 10−10

3.35 -2.83 0.29 -0.0134 7.57× 10−8 1.392× 10−9

Figure S1: Schematic illustration of the ion transport in a two dimensional
nanoslit system under consideration where a charge-regulated silica in a general
salt solution containing multiple ionic species H+, OH–, Na+, Cl–, H2O, SiO2.
Adsorption of the metal cations occurs..
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Figure S2: A representative TEM image of the 90nm-thick mesoporous silica
film synthesized by Wooten et al.42 The data was collected at 68,000x magnifica-
tion and span roughly 358nm by 450 nm. These data reveal a preponderance of
ordered hexagonally-packed pore regions (bulk-like region) with a small number
of defects evident as small linear features (fused pore-rich region). .
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Figure S3: Matched filtering results for simulated transmission electron
microscopy (TEM) images of a mesoporous silica film from Wooten et al.42 First
and second rows correspond to the filters and corresponding matched filtering
result at 0 and 30 degree rotations. Bottom row provides the raw data and an
image denoting match filter detected fused pore (green) and bulk unit cell (red)
features. . 35



Figure S4: Illustration of all geometries used in simulations..
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Figure S5: Concentration profile of K+ and Cl– along the center line of
nanopore under different wall electric potentials and κD(D=10.2nm is the di-
ameter of nanopore). The height at x axis refers to the z direction: 0 <
height < 200nm is bottom reservoir, 200nm < height < 234nm is nanopore
and 234nm < height < 434nm is top reservoir. .
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Figure S6: Numerical KCl conductance versus κD.
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S.2 Supplemental results

S.2.1 Matched filter detection protocol and performance on real
data

For the detection criterion in Eq. 7, we defined ’true positive’ and ’false posi-
tive’ metrics that we sought to maximize or minimize, respectively, for a given
choice of (λfused, λbulk) These metrics were evaluated for two subsections of
Fig. S2, a ’fused pore-rich’ region and a ’bulk-like’ region (see Methods). These
regions were manually annotated with markers indicating the probable fused
pore or bulk-like unit cells. The true positive metric was based on counting
the number of above-threshold pixels for a given filter that overlapped with
the hand-annotated markers. The false positive metric counted the number of
above-threshold pixels that appeared anywhere in the complementary region,
e.g. fused pore filter detections that occur in the bulk-like region and vice
versa. Because the manual annotations were imprecise and the false positive
pixels could scale with image size, we normalized the true positive and false
positive rates by the pixel counts returned for the lowest threshold parame-
ters considered. Hence, a minimal λfused value would return normalized true
positive and false of 1.0, though the unnormalized values would typically be
much larger for the true positive relative to false positive pixels. In Fig. S7 and
Fig. S8, we present ROC curves to assess the relative true positives (correct
detections) versus false positive (incorrect detections) as a function of a cutoff
parameter, λ. Detections were evaluated via Eq. 7, for which detections above
λ are designated as hits. In this study, we selected thresholds that minimized
false positive rates, while still affording reasonably high true positive rates. For
the fused pore unit cell, we selected λ = 0.2, while the λ = 0.4 was chosen for
the bulk unit cell. These rates permitted roughly 60% true positive rates.
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Figure S7: a) Normalize true positive (blue) and false positive (red) rates
as a function of bulk filter threshold (λ). b) Corresponding receiver operator
characteristic (ROC) curve. Thresholds are indicated in the plot. .
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Figure S8: a) Normalize true positive (blue) and false positive (red) rates
as a function of fused threshold (λ). b) Corresponding receiver operator char-
acteristic (ROC) curve. Thresholds are indicated in the plot. .
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S.2.2 Grahame equation for CaCl2 salt solution

When the solution is composed of divalent cation (e.g., CaCl2 solution), the
Grahame equation used to relate wall electric potential (φ0) and surface charge
density (σs) is given as:

σs(φ0) =
√

8εoεrkBT sinh

(
eφ0

2kBT

)(
[CaCl2](2 + exp(

−eφ0

kBT
))

)0.5

(S1)

S.2.3 Validation of pH-regulated surface charge density

Main point: pH-effects can be well-approximated by simple model,
allowing for more details 3D modeling. Potential empirical KH rela-
tionships

To test the ability of PNP model on describing silicate surface charge density,
we numerically calculate the surface charge density of a planer silica film in
contact with KCl aqueous solution. Silicate materials present a high density

of hydroxyl groups, for which the ratio of Si O– to Si OH +
2 determines the

surface charge density. Silanol groups are readily deprotonated/protonated thus
the surface charge density can vary depending on the solution pH (see Eq. 12).
Specifically, lower pH increases the extent of surface protonation, which thereby
reduces the negative surface charge density. The surface charge density at the
silicate materials is given by Eq. 19. For the purpose of validating our modeling
results, we provide in Fig. S9 an analytical expression for σs at planar silica
surface from Yeh et al:61 :

σs =
2εoεrκRT

zF
sinh

(
Fzζ

2RT

)
(S2)

σs = −FΓtotal
Ka −Kb([H]0exp(− Fζ

RT ))2

Ka + [H]0exp(− Fζ
RT )) +Kb([H]0exp(− Fζ

RT ))2
(S3)

where κ is the inverse of Debye length, [H]0 is the bulk proton concentration
determined by pH, and ζ is zeta potential of the planar surface. After solving
ζ through combination of Eq. S2 and Eq. S3, σs can be solved by substituting
ζ into Eq. S3.

In Fig. S9 we present predictions of the surface charge density, σs for a planar
silica film and a silica-based nanopore(length = 90 and radius = 5 nm, analogous
to nanoporous film dimensions from42) at several ionic strengths ([KCl]∈[1,1000]
mM) and pH values (pH∈[4,8]). These calculations were performed on 2D ge-
ometries (half-plane and axi-symmetric domain). Overall, the numerical results
are in strong agreement with theoretical predictions. This is even the case for
the nanopore, which is morphologically different from the planar domain as-
sumed by the theoretical model. From these data, it is clear that increasing pH
leads to a more negative surface charge density, which results from driving the
silanol deprotonation reactions. At elevated ionic strengths, the models pre-
dict more negative deviations from the theoretical surface charge predictions.
We attribute this trend to a greater degree of electrostatic shielding owing to
the decreasing Debye length with increasing ionic strength, which reduces the
favorability of attracting positively charged protons to the negatively charged
surface. Another possible reason is due to the proton-cation competition mech-
anism:6,8 Protons will be more excluded from the hydroxyl groups due to high
K+ concentration, thus causing a more negative surface charge density. We also
noticed that in Fig. S9B, σs of the nanopore scales with κD in a near-linear
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manner. This linearity was confirmed by the high correlation coefficients of
fitted lines, which is somewhat surprising, Yeh et al6 has shown that surface
charge density near the pore mouth differs from that of the pore interior.

Figure S9: (A)Surface charge density, σs, for a silica materials as a func-
tion of ionic strength ([KCl]) and pH. Numerical estimates are based on FEM
simulations for a planar silica film (2D planar) as well as a 90 nm long pore
with a 5 nm radius (2D axisymmetric), analogous to nanoporous film dimen-
sions from42). Validations are compared against a theoretical estimate (Eq. S2)
for the surface charge of a planar silica film.61 (B) Surface charge density as a
function of κD (D = 10nm is the diameter) in the nanopore. .
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S.3 KCl conductance using Navier-Stokes (fluid flow) and
Poisson-Nernst-Planck formalisms

In Fig. S10 we present comparisons of experimental conductance data for a
nanopore,7, including predictions using the PNP model augmented with fluid
flow. For the PNP-Navier-Stokes model (PNPNS), the flux density of each ionic
species is given by

Ji = −Di

(
∇ci +

ziFci
RT

∇φ
)

+ uci (S4)

where the last term denotes the contribution from convection and u is the fluid
velocity. The fluid velocity is solved subject to Navier-Stokes and continuity
equations:

−∇p+ µ∇2u = 0 (S5)

∇ · u = 0 (S6)

where p and µ are the hydrodynamic pressure and the fluid viscosity, respec-
tively. We set p = 0 and µ = 1× 10−3 Pa · s as that used in Yeh et al.6 Results
from the PNP approach and PNPNS results are similar.
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Figure S10: Experimental7 and predicted KCl conductance data in a
nanopore, using Poisson-Nernst-Planck (PNP) theory and a PNP approach that
includes fluid flow via Navier-Stokes equations. .
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S.4 Ionic conductance of electrolyte solutions at varying
wall electric potentials in nanopore/nanoslit

In order to investigate the sensitivity of the conductance results to our imple-
mentation of the charge-regualted silica surface, we predicted conductance of
KCl and CaCl2 at varying wall electric potentials(Fig. S11) . For both KCl
and CaCl2, as the electric potential on the pore surface approaches 0,the con-
ductance declines. While KCl is less sensitive to wall electric potential, CaCl2
declines sharply as wall electric potential approaches 0. In addition, the sensi-
tivity of conductance estimates to wall electric potential declines with increasing
ionic strength, as the surface potential is shielded to a greater extent.

Figure S11: Ionic conductance at varying wall electric potentials. A) KCl
ionic conductance(nanopore). B) CaCl2 ionic conductance(nanoslit).
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S.4.1 Characterization of Ca2+ adsorption at silica surfaca

The amount of Ca2+ adsorbed at the silica surface (nCa) was calculated as fol-
lowing: Assuming the layer formed by adsorbed Ca2+ is about 0.2nm thick(l =
0.2nm, comparable to the radius of Ca2+). We do a volume integration of [Ca]
over this Ca2+ layer to get the total amount of absorbed Ca2+ . As shown
in Fig. S12A: nCa increases linearly with the increasing of nanopore radius.
This is because larger pore radii provides more surface onto which Ca2+ can be
absorbed. In addition, nCa increases with the increasing of bulk [Ca] at fixed
radius. This is because higher [Ca] will drive the Ca2+ adsorption reaction to
the product end, resulting more Ca2+ being absorbed. We also characterized
the percentage loss of Ca2+ (defined as nCa

Npore
, where Npore is the total amount

of Ca2+ in the nanpore). As shown in Fig. S12B: The largest percentage loss of
Ca2+ due to absorption is about 30% to 35% when radius of nanopore is about
2nm and as radius increases, the percentage loss of Ca2+ decreases. This is
because the volume of nanopore(denominator) expands more rapidly than that
of Ca2+ layer. Also a larger bulk [Ca] leads to a smaller percentage loss of Ca2+

since larger [Ca] makes Npore expand more rapidly, thus leading ratio of nca to
Npore reduced.

Figure S12: Amount of Ca2+ absorbed on the nanopore wall at pH=7 and
with pore length = 90nm under varying nanopore radiis(2D axisymmetric) . A)
The absolute amount of Ca2+ absorbed at silica surface. B) Percentage of Ca2+

absorbed(calculated as the bound Ca2+ divided by the total amount of Ca2+ in
the nanopore). .
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S.4.2 Effects of porosity on permeability

Besides the electrostatic interaction, we also explored the packing compactness
of nanopores on CF permeation. For clarity, we defined porosity as shown in
Fig. S14 to characterize the packing compactness of nanopores on the silica
membrane. While keeping nanopore radius r = 5nm fixed, by changing the
value of h and w, we can achieve hexagonal unit cells with different porosities.
We then calculated CF permeability in these hexagonal cells at pH=7.4, bulk
[CF]=1mM and background ionic strength = 1mM. It can be shown clearly in
Fig. S14 that, CF permeability linearly increases with porosity, indicating that
a more compacted packing of nanopore will has higher CF permeability. Also
at fixed porosity, a less negative electric potential permits a larger permeability,
which is consistent with trends observed in Fig. 6.

Figure S13: Numerically simulated permeability of CF passing through
unit cell structures(dimensions are shown in Fig. 2). Total ionic strength
is maintained as 0.9M which results κD=31.18(κ is inverse of Debye length
and R=10nm is diameter of nanopore). An fixed electric potential φ =
−69.5mV (value is from a PNP+pH regulated surface charge model at pH =
7.4) was applied on the nanopore wall..
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Figure S14: Permeability of CF vs. hexagonal unit cell porosity. Background
ionic strength is set as 1mM and [CF] = 1mM. .
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