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Abstract

The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract.
Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force
and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have sig-
nificant intrinsic disorder that contributes to their functions, yet the biophysics of these
intrinsically disordered regions (IDRs) have been characterized in limited detail. In this
review, we first enumerate these myofilament-associated proteins with intrinsic disorder
(MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize
the biophysics governing IDR properties and the state-of-the-art in computational tools
toward MAPID identification and characterization of their conformation ensembles. We con-
clude with an overview of future computational approaches toward broadening the under-
standing of intrinsic disorder in the cardiac sarcomere.
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Purpose and scope

The contractile cells of the heart rely on myofilament proteins that transduce a chemical trig-
ger, calcium (Ca2+), into mechanical force. The myofilament proteins form macromolecular
assemblies that perform diverse structural, functional, and regulatory roles. While the compo-
sition of these assemblies and their three-dimensional structures continue to be resolved, a
high percentage of myofilament proteins contain intrinsically disordered region (IDR)s that
do not easily lend themselves to conventional structure determination techniques, such as
X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. We introduce
the term myofilament-associated protein with intrinsic disorder (MAPID) to refer to those
myofilament proteins that contain IDRs. We also use the term intrinsically disordered protein
(IDP) to refer to proteins that are predominantly unfolded to distinguish them from folded
proteins with regions of disorder. Studies and reviews to date have largely acknowledged the
existence of IDRs in these proteins, though some reports have gone further to examine how
IDRs tune filament protein-binding affinities (Uversky et al., 2011) and contribute to cardio-
myopathy (Na et al., 2016). However, the IDRs in the majority of MAPIDs are not character-
ized in detail and thus their roles in myofilament function are largely unexplored. As such,
determining the structure/function relationships of these MAPIDs is a final frontier in under-
standing myofilament physiology.
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Experimental and computational methods to structurally and
functionally characterize IDPs and IDRs of arbitrary origin have
exploded in growth in the last decade. Reviews of IDP structure
and structure determination have thus grown in popularity in
recent years (Gibbs and Showalter, 2015; Schramm et al., 2019),
but they have not been interpreted in the context of proteins essen-
tial to heart cell contraction. The purpose of this review therefore is
to highlight recent advances in computational approaches devel-
oped for, or could be applied, to determining the structures and
functions of MAPIDs. We divide this review into two parts: (1)
A summary of IDRs in a broad ensemble of myofilament proteins
(section ‘Myofilament-associated protein with intrinsic disorder
(MAPID)s’) and (2) computational modeling techniques that
have been, or could be, applied to MAPIDs (section
‘Computational methods for predicting conformation ensembles
of isolated MAPIDs’ to section ‘Computational methods for pre-
dicting the MAPID co-assembly’). We emphasize the current
state-of-the-art in the computational modeling of myofilament
IDPs that have been published in the last five years, where possible,
although some older studies are included for context. These inno-
vations are introduced in parallel with high-level discussions of
complementary experimental techniques.

Part 1: myofilament-associated protein with intrinsic
disorder (MAPID)s

In this part, we introduce myofilament proteins and their roles in
cardiac function. We next overview the proteins most commonly
associated with the myofilament, and the propensity of IDRs in
those proteins. Thereafter, we discuss how these IDRs influence
myofilament function and dysfunction, as well as prominent
challenges in characterizing their properties.

The physiology of myofilament proteins

Molecular function of myofilament proteins
Cardiac contraction is driven by the concerted activity of myofil-
ament proteins that contract the sarcomeres of the cell (see Fig. 1).
Although the major protein components of the sarcomere have
been identified, the composition of the sarcomere is dynamic
(Willis et al., 2008). For this reason, myofilament protein isoform
expression can vary during development and in response to path-
ological stimuli (Marston and Redwood, 2003). Therefore, we
limit the scope of this review to the myofilament-associated
genes of the adult rat cardiac myofilament reported in Kooij
et al. (2014) and depicted in Fig. 1. Myofilament proteins can
be loosely divided into those belonging to the thin filament (sec-
tion ‘MAPIDs of the thin filament’), the thick filament (section
‘MAPIDs of the thick filament’), and Z-disk (section ‘MAPIDs
of the Z-disk’). The thick filaments are formed from the inter-
twining tails of myosin protein dimers (see representative struc-
ture in Fig. 2). These myosins bind to actin monomers of the
thin filament, upon which energy released by the hydrolysis of
adenosine triphosphate (ATP) is used to generate mechanical
force. The thin filament comprises approximately 15 actin
(ACTC1) monomers, two troponin macromolecules, and two
tropomyosin chains that together form the repeating contractile
unit of the sarcomere (Yamada et al., 2020). Thin filament pro-
teins primarily sense elevated intracellular Ca2+ following an
action potential to unveil binding sites on actin for myosin. The
thin filaments of adjacent sarcomeres are joined by proteins
that form the Z-disk. In addition to forming a scaffold for

myofilaments, Z-disk proteins are subject to, and perform, sundry
regulatory roles that help adapt sarcomere force generation to
demand. Several proteins including myosin-binding protein C
(MyBPC3) and nebulin bridge filaments or link the Z-disk to fil-
aments, which are also discussed in sections ‘MAPIDs of the thin
filament’ and ‘MAPIDs of the Z-disk’. Excellent reviews on myo-
filament proteins and their functions include Russell and Solís
(2021) and others (Sols and Solaro, 2021), albeit with limited
discussion of their intrinsic disorder.

Contraction begins with the resting sarcomere. In that state, the
myosin binding sites on the thin filament are mostly blocked by
tropomyosin at resting Ca2+ levels during diastole (ca. 100 nM)
(Clapham, 2007). Activation of calcium channels on the plasma
membrane and sarcoplasmic reticulum (SR) following depolariza-
tion of the cell conducts Ca2+ and thereby rapidly increases the
intracellular Ca2+. TnC, a Troponin (Tn) protein, binds to one
equivalent of free Ca2+, which exposes a hydrophobic domain on
its N-terminus. The exposed domain provides a binding site for
the TnI C-terminus. TnC/TnI binding leads to shifts in the posi-
tions of TnT and tropomyosin (Tm). As Tm slides along the
actin filament (Rynkiewicz et al., 2015), binding sites on actin for
myosin are unveiled. Actin-bound myosin results in what is com-
monly called a cross-bridge. Following thin filament activation,
cross-bridge formation and ATP hydrolysis generate force that con-
tracts sarcomere. Thin filament activation and cross-bridge forma-
tion are highly cooperative, that is, the activation of one contractile
unit facilitates the activation of its neighbors. Restoration of dia-
stolic calcium level via SR Ca2+ pumps and plasma membrane
(PM) ion exchangers ultimately returns the sarcomere to its relaxed
state. Many genes beyond those named here (see Fig. 1) couple the
Z-disks and filaments, as well as tune the sarcomere’s responsive-
ness to Ca2+, stretch, and external forces (namely those arising
from the filling of ventricles and atria).

Sarcomere contraction is tightly regulated on a beat-to-beat
basis and dynamically adapts to demands on cardiac output.
Rapid regulation is afforded through post-translational modifica-
tion (PTM) of myofilament proteins that include phosphoryla-
tion, oxidation, ubiquitination, acetylation, and methylation
among others (Liddy et al., 2013; Jin et al., 2019). To date, phos-
phorylation is likely the best understood of myofilament PTMs.
Many sites are suggested for titin (999 sites), myosin (87 sites
for MYH6 and 126 sites for MYH7), TnI (20 sites), and
MyBPC3 (35 sites) based on our queries of the PhosphoSitePlus
database (Hornbeck et al., 2015). Phosphorylation most com-
monly occurs through the kinases Ca2+/calmodulin-dependent
protein kinase II (CaMKII) and protein kinase A (PKA), as well
as protein kinase C (PKC) (DeSantiago et al., 2002; LeWinter,
2005; Hidalgo et al., 2013). PKA generally increases force by
potentiating Ca2+ release and enhances relaxation by decreasing
the Ca2+-sensitivity of force generation, while PKC typically
opposes these changes (LeWinter, 2005); CaMKII is implicated
in accelerating the rate of relaxation while the heart is pacing rap-
idly (DeSantiago et al., 2002). However, these adaptations are sen-
sitive to the specific sites that are phosphorylated. Recent
applications of high-throughput mass spectrometry are revealing
a host of other PTM modalities in myofilament proteins (Jin
et al., 2019), including acetylation, methylation, oxidation by reac-
tive oxidation species, and conjugation with sundry other biomol-
ecules. Unlike myofilament protein phosphorylation, these PTMs
and their impact on contractility are less understood. As will be
later discussed, PTMs are common in IDRs of myofilament
proteins.
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Other regulatory changes include cellular and tissue adapta-
tions to demands on cardiac output that generally occur more
slowly than those afforded by PTMs. Hypertrophic adaptations,
for instance, result in enlargement of the heart due to physiolog-
ical drivers (development, exercise, and pregnancy) and patho-
physiological (congenital defects, disease and infection, lifestyle
or adverse environmental) conditions. The heart may also
undergo atrophic changes that reduce the heart size and under
pathophysiological conditions, the thinning of cardiac tissue,
which altogether decrease cardiac output. These adaptations can
entail the up- and down-regulation of myofilament proteins
including their isoforms (Bers, 2001), and changes in the number
and assembly of sarcomeres (Martin and Kirk, 2020). While
important, these modalities of regulation generally impact the
number and organization of myofilament proteins, not their
intrinsic properties, and are thus beyond the scope of our review.

Cardiac disease remains one of the most prolific causes of
death. The majority of etiologies correspond to pathological adap-
tations to diet or sedentary lifestyle (Forman and Bulwer, 2006),
although hereditary origins to congenital defects are also com-
mon. At the myofilament protein level, cardiac disease can be
accompanied by dysregulated contractility, such as altered Ca2+

sensitivity (Messer and Marston, 2014), kinetics of force genera-
tion (Belus et al., 2008), maximum contractile force (Crocini
and Gotthardt, 2021), and cooperativity (Ramirez-Correa et al.,
2015). Genetic causes or susceptibilities can include missense

mutations in myofilament proteins or translational defects
(Xu et al., 2010; Mazelin et al., 2016). As an example, the cardiac
myosin isoforms MYH7 and MYH6 have 58 and
3 disease-associated variants, respectively, and another 247 and
10 variants of unknown significance (VUSs) based on the
ClinVar database (Landrum et al., 2013).1 A variety of these
mutations exhibit loss- or gain-of-function at the protein-level
(Moore et al., 2012), which stem from impacts on myosin’s intrin-
sic properties or its interactions with other myofilament proteins.
Similarly, PTMs within its IDRs can also contribute to myosin
dysfunction (Mahmud et al., 2021). While gain- and
loss-of-function phenotypes at the protein level are unlikely to
explain all aspects of a pathological phenotype (Ono et al.,
2020), studies of IDRs are instructive for understanding mecha-
nisms of myofilament dysfunction.

Myofilament proteins and structure determination efforts
Determining the structures of myofilament proteins at atomistic
resolution is an important preliminary step in uncovering their
functional roles. The prevalence of well-folded myofilament-
associated proteins has enabled hundreds of structural studies
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Fig. 1. (a) Schematic illustration of the sarcomere (drawn with BioRender). (b) In this review, we focus on the cardiac proteins proposed in Kooij et al. (2014) with
some additional noteworthy examples. For proteins with multiple isoforms, only isoforms with spectra counts (SC) >10 were selected. Proteins with IDR(s) are
indicated by red *. Double ** indicates that the IDR(s) has been experimentally confirmed for the gene, while a single * indicates that the confirmation was
based on a related isoform or via bioinformatic predictions (see Table 1 for details).

1These are ‘protein changing’ variants, downloaded from ClinVar on 6/2/2022. The
‘disease-associated’ variants are those categorized as ‘pathogenic’ with selection criteria
provided; variant of unknown significance (VUS) refer to variants that have not yet
been characterized
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via X-ray crystallography, NMR, cryo-electron microscopy
(cryo-EM), and small-angle X-ray scattering (SAXS). Troponin
C (TnC) from chicken was one of the first myofilament proteins
whose structure was determined in atomistic detail, initially via
crystallography in 1988 (Ka et al., 1988) and later by NMR
(Dvoretsky et al., 2002). Structures of the troponin complex,
including the complete TnC molecule with fragments of TnI
and TnT were more recently resolved via X-ray (PDB: 1J1E) in
2003 (Takeda et al., 2003). Macromolecular structures of intact fil-
aments or the Z-disk are less common, but have relied on tech-
niques including cryo-EM spectroscopy, SAXS, and
computational protein/protein docking techniques (Alamo
et al., 2016; Yamada et al., 2020; Wang et al., 2021). As an exam-
ple, a reconstruction of the thin filament was obtained by docking
proteins like troponin and tropomyosin to actin filaments, using
data collected from cryo-EM (Yamada et al., 2020). Similar
approaches were also used for the thick filament (Alamo et al.,
2008) and the Z-disk (Wang et al., 2021). Despite the strengths
of these methods in determining the Angstrom-resolution struc-
tures of many well-folded myofilament proteins, at most limited
details of IDRs are revealed through these approaches. The pau-
city of IDR information in these structural models therefore leaves
a large gap for linking structure to function.

Computational approaches have grown in tandem with exper-
imental techniques to utilize and inform structure determination

studies of myofilament proteins. Computer simulations of protein
structure, properties, and functions have long served and will con-
tinue to play vital roles in elucidating myofilament mechanics and
regulation. Early studies relied on descriptions of proteins as static
bodies that could interact through steric and long-range interac-
tions (Millman and Irving, 1988). For instance, myofilaments
have been described as charged rods with negative electrostatic
potentials, from which electrostatic fields within the myofibril
could be predicted (Millman and Irving, 1988). Dynamic models
of myofilament proteins have largely consisted of molecular
dynamics (MD) simulations, coarse-grained simulations, and
implicit representations (Kekenes-Huskey et al., 2013; Lindert
et al., 2015; Aboelkassem et al., 2019), which have been made pos-
sible through the availability of hundreds of experimentally deter-
mined protein structures. These simulations have provided critical
insights into the molecular mechanisms underlying sarcomere
contraction, its modulation by PTMs, and impacts of missense
variants on contractile function. Bosswman and Lindert (2019)
offer an excellent review of such applications applied to folded
myofilament proteins.

Myofilament-associated protein with intrinsic disorder (MAPID)s
Despite advances made with well-folded, globular proteins, a sub-
stantial fraction of the myofilament lacks well-folded structure.
Proteins lacking folded structures are referred to as proteins
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Fig. 2. Core proteins of the thin and thick filament, based on the schematic from Harris et al. (2011). The thin filament structure PDB 6KN8 was constructed from a
cryo-EM study (Yamada et al., 2020). PDB 5TBY was generated from homology modeling. The MyBPC3 structure was predicted by AlphaFold and was downloaded
from the UniprotKB database. A 2 nm resolution model of tarantula thick filament was built by fitting atomistic component structures to EM density map (PDB
3DTP (Alamo et al., 2008)).
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Table 1. Brief summary of reported experimental and computational studies on MAPIDs

Gene IDR region Experimental characterization Computational modeling

Thin filament

ACTC1 Probably whole protein Native gel analysis (Neirynck et al., 2006) Bioinformatic analysis (Povarova et al., 2014)

TNNC1 Linker connecting N-/C- domains Bioinformatic analysis (Na et al., 2016)

TNNI3 N-terminus X-ray, NMR (Takeda et al., 2003; Hwang et al., 2014) Conventional AAMD (Cheng et al., 2014; Cheng et al., 2015)

The switch peptide Conventional AAMD (Lindert et al., 2015), effective concentration
(Siddiqui et al., 2016), accelerated AAMD + effective concentration
(Cool and Lindert, 2021)

TNNT2 Residues R158–Q203 FRET (Deranek et al., 2022) Conventional AAMD (Deranek et al., 2022)

C-terminus Cross-link mass spectroscopy (Johnston et al., 2019) Bioinformatic analysis (Na et al., 2016)

TPM1/TPM3 N-terminus NMR, CD (Kostyukova et al., 2007)

LMOD2 X-ray, immunofluorescence imaging, cosedimentation (Tsukada
et al., 2010; Colpan et al., 2017; Tolkatchev et al., 2021)

Docking + MD refinement (Tolkatchev et al., 2021)

TMOD1 N-terminus CD (Kostyukova et al., 2007) Docking + MD refinement (Tolkatchev et al., 2021)

CTNNA1 Helix bundle E (residues Q260–R360) X-ray, CD, native gel analysis (Hirano et al., 2018)

TGM2 IDRs spanning the sequence X-ray (Pinkas et al., 2007; Kanchan et al., 2015) Bioinformatic analysis (Thangaraju et al., 2017)

SYNPO2 Most part of the protein CD, electrophoresis (Khaymina et al., 2007) Bioinformatic analysis (Khaymina et al., 2007)

ABLIM1 Linkers between LIM domains Bioinformatic analysis (Ma and Miao, 2020)

Thick filament

Myosin MYH7’s S2 motif CD (Singh et al., 2021) Homology modeling (Nag et al., 2017)

LMM domain Native gel analysis, CD (Parker et al., 2018) Conventional AAMD (Parker et al., 2018)

MYH7’s helix motif (residues L693–K707) X-ray (Houdusse et al., 1999)

MYH7’s loop 4 (residues G354–E380) cryo-EM (Risi et al., 2017) Cryo-EM constrained modeling (Risi et al., 2017), docking + cryo-EM
fitting + MD refinement (Doran et al., 2020)

MYO6’s two dynamics loops cryo-EM (Gurel et al., 2017)

MYO5a’s coiled-coil structure CD, ultracentrifugation (Wagner et al., 2006)

RLC’s N-terminus (Myosin II) Conventional AAMD (Espinoza-Fonseca et al., 2007)

MYL3’s N-terminus SAXS (Alamo et al., 2017) Docking + homology modeling (Alamo et al., 2017)

MYBPC3 N-terminal part (majorly concerning the
M-domain)

CD, NMR, AFM, SAXS, FRET (Howarth et al., 2012; Colson et al., 2016;
Michie et al., 2016; Previs et al., 2016)

Bioinformatic analysis (Lau et al., 2019), conventional AAMD (Colson
et al., 2016; Doh et al., 2022), Bayesian inference guided structural
modeling based on SAXS data (Potrzebowski et al., 2018)

TTN PEVK repeats CD, gel permeation chromatography, gel electrophoresis (Ma and
Wang, 2003; Duan et al., 2006)

Conventional AAMD + umbrella sampling + state modeling (Sun and
Kekenes-Huskey, 2020), AAMD (Lu et al., 1998; Lee et al., 2007),
bioinformatic analysis (Tarnovskaya et al., 2017)

Linkers between modular units NMR, HDXMS (Zhou et al., 2021a) Steered MD (Hsin et al., 2011)
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Table 1. (Continued.)

Gene IDR region Experimental characterization Computational modeling

Z-disk

CRYAB N- and C-terminus NMR (Jehle et al., 2010; Baldwin et al., 2012) Conventional AAMD (Chiappori et al., 2016)

ENH2 LIM domain NMR (PDB ID 2DAR)

OBSCN PDZ domain and linkers Solution NMR (PDB ID 2EDH) Conventional AAMD (Whitley et al., 2019)

MYOT N-domain and C-terminus Bioinformatic analysis (Puž et al., 2017)

MYOM1 IDRs spanning the sequence AFM, electron microscopy, CD (Schoenauer et al., 2005) Bioinformatic analysis (Mészáros et al., 2018; Lau et al., 2019)

DES N- and C-terminus Bioinformatic analysis (Anbo et al., 2019)

FHL2 LIM domain NMR (PDB 2D8Z)

NEB IDRs spanning the sequence Bioinformatic analysis (Wu et al., 2016)

Miscellaneous

ANK2 C-terminus CD, binding assays, X-ray (Abdi et al., 2006; Chen et al., 2017)

FLNC Filamin domain NMR (PDB 2D7O)

MYOZ2 Whole MYOZ1 Binding assays, CD, NMR, X-ray, SAXS (Sponga et al., 2021) SAXS-based structure modeling (Sponga et al., 2021)

SPTB N-terminus and residues Q1898–E2083 CD, NMR (Park et al., 2003; Long et al., 2007)

Experimental methods and their observables supporting intrinsic disorder presence are briefly explained. EM: missing density. X-ray: unresolved structure or high B-factor. CD: little to no secondary structure. NMR: secondary structure and IDP-related
observables (Brutscher et al., 2015). FRET: ensemble dimensions/dynamics, population heterogeneity. SAXS: compaction (Rg) (Gibbs and Showalter, 2015). AFM: mechanical properties. Gel analysis: larger Stokes radius, slower migration (Schramm
et al., 2019).

6
B
in

Sun
and

Peter
M
.
K
ekenes‐H

uskey

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375



with IDRs when partially folded, or as an IDP if the protein
is mostly or completely unfolded. We describe such
myofilament proteins as MAPIDs to distinguish them from
their well-folded myofilament counterparts. MAPIDs play pivotal
roles in myofilament function. One such example is the troponin
complex consisting of TnI, TnC, and TnT proteins that triggers
muscle contraction after binding Ca2+ (Metskas and Rhoades,
2016). Both TnI and TnT have IDRs that are involved in initiating
contraction (Hoffman and Sykes, 2008; Hwang et al., 2014;
Johnston et al., 2019). Another example is the behemoth titin pro-
tein, which features numerous proline, glutamate, valine and
lysine-rich (PEVK, ∼28 residue IDR (Linke et al., 1998; Ma and
Wang, 2003)) repeats that help maintain passive tension in myo-
cytes (Yamasaki et al., 2001). In fact, IDRs appear to be very com-
mon among the proteins of the myofilament. To estimate their
propensity, we used the PONDR software ‘PONDR-VLXT’ (Li
et al., 1999; Romero et al., 2001) to predict IDRs in the sequences
of myofilament proteins listed in Fig. 3. PONDR identified that
among over 30 myofilament genes that we considered in this
work, approximately 42% of the amino acids in the sequences
have potential disorder. This number resembles estimates of
30–50% for the entire Eukaryotic proteome (Best, 2017; Clarke
and Pappu, 2017).

In this review, we discuss predominant myofilament proteins
identified in the adult rat cardiac myofilament by Kooij et al.
(2014) and several additional genes of recent interest including
ENH2, MYOT, NEB, MYPN, and LMOD2. We limit our discus-
sions to the major isoforms of these proteins. For those with mul-
tiple isoforms, we select the most common based on Kooij et al..2

We classify these proteins further using the classification scheme

introduced in section ‘Molecular function of myofilament pro-
teins’ and Fig. 1 which defines three regimes: the thin filament,
the thick filament, and the Z-disk. For convenience, proteins
that are localized to two more regimes, such as MyBPC3 linking
the thin and thick filaments, are assigned to a single class. For
each gene, we briefly introduce available IDR studies for it,
where applicable. Experimental approaches used for the IDR
studies are described in part 2. If IDR studies are not reported,
we use two sequence-based approaches, the PONDR IDR predic-
tor (Obradovic et al., 2003) and IDR state-diagrams (Das and
Pappu, 2013; Das et al., 2015; Holehouse et al., 2017) in Fig. 3
to estimate IDR propensity and structure. We also refer to
the ClinVar (Landrum et al., 2013) and PhosphoSitePlus
(Hornbeck et al., 2015) databases for single nucleotide polymor-
phisms and PTMs within IDRs, respectively.

MAPIDs of the thin filament. We first describe the thin filament
proteins, which we divide into two groups: those forming the core
of the thin filament and those associated with the thin filament.
The core proteins of the thin filament include actin, troponin
(TnC, troponin I (TnI), troponin T (TnT)), and Tm. The struc-
tures of many of these proteins have been determined down to
Angstrom-level resolution, though many of these include IDRs
that have not been completely resolved. The core structure of
the intact thin filament comprising the troponin complex, actin,
and tropomyosin has been resolved by cryo-EM (Yamada et al.,
2020) (see Fig. 2).
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Fig. 3. (a) The IDP-phase diagram developed by the Pappu lab (Holehouse et al., 2017), which groups proteins by characteristic disorder including molten,
extended, or compact (Uversky, 2020) classes have also been proposed based on their charge patterns (R1–R5) (Holehouse et al., 2017): R1 corresponds to
weak polyampholytes and resembles pre-molten globules. R3 signifies strong polyampholytes with a comparable amount of positively and negatively charged
residues and is described as hairpins/coils/chimeras. R2 is the boundary between R1 and R3 where coils and pre-molten globules coexist. R4 and R5 are strong
polyampholytes like R3, but with dominant negative and positive residues, respectively. IDPs in R4 and R5 are swollen coils. (b–e) PONDR-VLXT predicted disor-
dered regions in cardiac myofilament proteins. These proteins are categorized into thin/thick filament(s), Z-disk, and miscellaneous. The IDP region is colored red
and interlaced with folded regions. The blue line depicts the first and last amino acid and the number is increasing counterclockwise. The numbers in the paren-
theses present the percentage of predicted IDR residues, ‘pathogenic or likely pathogenic’ mutations, and phosphorylation sites located in the predicted IDP
regions, respectively. The structural state estimation of predicted >5 residue IDR regions before (black dots) and after phosphorylation (magenta dots, if PTM
site exists in the IDP region) in the IDP-phase diagram were also shown.

2Isoforms with spectra count (SC) >10 were selected. The spectra count is defined as
the total number of spectra identified for a protein via mass spectrometry.
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Core thin filament MAPIDs. Actin (ACTC1) Actin is a 42 kD pro-
tein that forms the backbone of the thin filament (Despond and
Dawson, 2018; Frank et al., 2019). In the thin filament, actin
has a well-folded structure when co-assembled with troponin
and tropomyosin (PDB 6KN8 (Yamada et al., 2020)).
Actin-binding proteins participate in actin filament formation
(Miao et al., 2018). However, experimental evidence suggests
that actin does not fold spontaneously without ligand binding
or chaperones (Neirynck et al., 2006; Turoverov et al., 2010).
This agrees with bioinformatics studies that suggest actin contains
a significant degree of IDR content (Turoverov et al., 2010;
Povarova et al., 2014). Within these IDR regions, we identified
42 phosphorylation sites and two disease-associated mutations
using the PhosphoSitePlus and ClinVar databases, respectively.

Troponin C (TNNC1) The Tn complex comprises troponin C
(TnC), troponin I (TnI), and troponin T (TnT). This complex
serves as the central hub on the thin filament that transduces
Ca2+ binding to priming the thin filament for myosin binding
and ultimately contraction (Marston and Zamora, 2020).
Troponin C (18 kD) has been extensively studied in isolation or
in the intact Tn macromolecule with TnI and TnT (Hoffman
et al., 2006; Hoffman and Sykes, 2008; Lindert et al., 2012a,
2012b; Zamora et al., 2016; Marques et al., 2019). The Ca2+ sensor
TnC is one of the seemingly few myofilament proteins for which a
complete, well-folded structure has been resolved. One of the
complete structures for TnC was crystallized as a complex of
TnC, TnI, and TnT via X-ray crystallography at 3.3 Å resolution
(PDB code:1J1E (Takeda et al., 2003)). Nonetheless, the linker
bridging its N- and C-terminal domains is predicted to be intrin-
sically disordered (Na et al., 2016), while predictions using
PONDR in Fig. 3 suggest even greater propensity for disorder.
We discuss this in greater detail in Fig. S1. Coincidentally, it
has few PTMs (4 from PhosphoSitePlus database (Hornbeck
et al., 2015)) and 10 likely pathogenic variants from the
ClinVar database (Landrum et al., 2013).

Troponin I (TNNI3) TnI is a 24 kD protein that binds to a
hydrophobic patch on TnC that is exposed following Ca2+ bind-
ing (Marston and Zamora, 2020). TnI binding to TnC primes the
thin filament for myosin/actin cross-bridge formation (Marston
and Zamora, 2020). TnI is perhaps the best studied of the
IDR-containing proteins that form intact Tn. TnI’s N-terminal
fragment, which consists of residues M1–H34, is intrinsically dis-
ordered and is not represented in troponin crystal structures from
Takeda et al. (2003). The mobility of the disordered region in the
TnI’s N-terminal domain is integral to its function (Hoffman
et al., 2006). Using solution NMR spectroscopy, Hwang et al.
revealed that this region plays an important role in positioning
troponin C for its function (Hwang et al., 2014) and its conforma-
tional fluctuations impact Ca2+-regulated myosin binding to the
thin filament (Hoffman et al., 2006; Hoffman and Sykes, 2008).
This IDR also harbors three PTM sites (S5/S23/24) and possible
cardiac disease-related mutations (Hwang et al., 2014; Metskas
and Rhoades, 2016; Na et al., 2016). In addition, Takeda et al. sug-
gested that TnI’s residues E66–R79 are likely disordered because
this region folded only when interacting with troponin C
(Takeda et al., 2003). Residues G137–R146 that form its inhibi-
tory peptide are also unresolved (Takeda et al., 2003). This inhib-
itory peptide binds to TnC’s hydrophobic patch, which is a
process that has been the subject of many computational studies
in recent years (Lindert et al., 2012b, 2015; Bowman and Lindert,
2019). Lastly, the TnI C-terminus (residues I125–S210) is also
predicted to be an IDR (Hoffman and Sykes, 2008) and contains

sites for PTMs. For instance, a mouse model examining the
phosphorylation of S199, which resides in the C-terminal IDR,
was found to impair diastolic cardiac function by increasing
Ca2+ sensitivity (Li et al., 2017). Nearby, an acetylation mimetic
at K132 exhibited accelerated relaxation relative to the native
amino acid (Lin et al., 2020). TnI also presents 12
disease-associated variants as reported by the ClinVar database
and tens of likely pathogenic mutations associated with cardiomy-
opathy (Lu et al., 2013).

Troponin T (TNNT2) TnT is a 36 kD protein that regulates
muscle contraction by binding to tropomyosin following
Ca2+-activation of TnC/TnI (Marston and Zamora, 2020). TnT
has two IDR regions. The first is a ∼50 residue linker (approxi-
mately residues R158–Q203) between two structured motifs
(Deranek et al., 2022). Cross-linking mass spectroscopy (MS)
shows that the binding of TnT’s intrinsically disordered
C-terminus to TnC contributes to force generation in the myofil-
ament (Johnston et al., 2019). Using Foerster resonance energy
transfer (FRET) and molecular dynamics (MD) simulations, the
linker’s conformational ensembles on the full cardiac thin fila-
ment have been elucidated (Deranek et al., 2022). The second
region is the C-terminus of TnT, which has been predicted to
be an IDR (Na et al., 2016), and confirmed by our PONDR results
in Fig. 3. PhosphoSitePlus indicates that the C-terminus
harbors several PTM sites (T213, S249, Y251, and T294).
Phosphorylation of several of these sites is reported to alter car-
diac contractility by either reducing Ca2+ sensitivity or ATPase
activity (Streng et al., 2013). Similar to TnI, TnT hosts tens of
mutations that are linked to cardiomyopathy (Lu et al., 2013).

Tropomyosin (TPM1 and TPM3) The 33 kD tropomyosin iso-
forms engage TnT to activate the thin filament. Modeling studies
to date have targeted the well-folded helices that shift (Rynkiewicz
et al., 2015) along the actin filament (Lehman, 2016) to unveil
myosin-binding sites. Tm forms a flexible coiled-coil structure
that binds to the thin filament (Singh and Hitchcock-
DeGregori, 2003; Yamada et al., 2020). This flexibility is a key
modulator of TM’s function, as mutations of a highly conserved
residue D137L, and a dilated cardiomyopathy (DCM) mutation
D230N in α-tropomyosin (TPM), causes a structural rearrange-
ment of its coiled-coil structure that consequently alters its flexi-
bility (Yar et al., 2013; Lynn et al., 2017). These changes
ultimately impair tropomyosin (TM) function (Yar et al., 2013;
Lynn et al., 2017). Its N-terminal domain is confirmed to be an
IDR by NMR and circular dichroism (CD) studies, which show
that this domain gains helical content upon binding to tropomo-
dulin (Kostyukova et al., 2007). This IDR character is believed to
explain the inability to resolve the region via cryo-EM in an earlier
study (Milligan et al., 1990). Two PTM sites (S6/S16 for TPM1
and T5/T6 for TPM3) reside within the N-terminal extension
as inferred from PhosphoSitePlus (Hornbeck et al., 2015). The
ClinVar database also indicates several possible pathogenic vari-
ants in the N-terminal IDR (K30Δ for TPM1; E3Q, D15N, and
M9R for TPM3). In addition, a K15N mutation in TPM1 is
reported to change actin’s slow-growing (pointed) end dynamics
(Colpan et al., 2017), which may impact sarcomere assembly.

Thin filament associated MAPIDs. Leiomodin (LMOD2) LMOD2
is a 62 kD protein that helps lengthen the thin filament by driving
actin assembly at the filaments’ barbed ends (Pappas et al., 2015).
While three leiomodin isoforms are known, LMOD2 has the
highest expression level in cardiac tissue (Tolkatchev et al.,
2021). A linker connecting three actin binding sites in LMOD2
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are likely to be intrinsically disordered, since (1) it is enriched in
negatively charged residues and (2) was not resolved in its crystal
structure (Tolkatchev et al., 2021). Immunofluorescence imaging
and co-sedimentation experiments showed that this potential
IDR facilitates the binding of LMOD2 to the thin filament by dis-
placing bound tropomodulin (Tsukada et al., 2010; Colpan et al.,
2017; Tolkatchev et al., 2021). Three possible pathogenic variants
within this IDR region are reported in ClinVar (R513Ter, L415fs,
and W398Ter) in addition to PTMs at sites Y369, T384, Y390,
T409, S412, S416, T420, and T456 in the PhosphoSitePlus
database.

Tropomodulin-1 (TMOD1) Tropomodulin (40 kD) is an actin-
binding protein that belongs to the same protein family as leiomo-
din (Tolkatchev et al., 2021). TMOD1 regulates actin filament
assembly (Boczkowska et al., 2015) and requires tropomyosin
(Tm) for its regulatory functions (Kostyukova et al., 2007). The
N-terminus of tropomodulin is an IDR based on its susceptibility
to proteolysis (Kostyukova et al., 2000) and CD spectroscopy
(Kostyukova et al., 2007). The region assumes an alpha-helical
configuration, however, when bound to the tropomodulin IDR
(Kostyukova et al., 2007). This IDR’s dynamic equilibrium exhib-
its ‘avidity’, in that it favors multiple binding interactions with
tropomyosin and actin (Tolkatchev et al., 2021). The dynamics
of the complex binding arrangement was recently examined in
a multiscale modeling strategy entailing docking and MD refine-
ment (Tolkatchev et al., 2021). Putative PTM sites are identified at
S2, Y3, Y10, and T23 from PhosphoSitePlus (Hornbeck et al.,
2015) that may suggest regulatory control of thin filament assem-
bly. Several mutations (A21K/E33V (Moroz et al., 2013) and
T54E (Dorovkov et al., 2008)) in the N-terminal IDR have also
been characterized. These mutations are shown to alter
TMOD1’s binding affinity toward tropomyosin (Moroz et al.,
2013) and abolish TMOD1’s actin capping function (Dorovkov
et al., 2008). As of yet, no variants of this gene have been reported
in ClinVar.

Catenin Alpha 1 (CTNNA1) is a 100 kD mechanosensitive pro-
tein that couples the actin cytoskeleton with cadherins of the cell
membrane (Vite et al., 2015). CD spectroscopy indicates that its
helix bundle E (residues Q260–R360) is intrinsically disordered
in the free protein (Hirano et al., 2018). This unfolding facilitates
binding to vinculin (Hirano et al., 2018). Eight PTM sites in the
helix E were reported in the PhosphoSitePlus database, in addition
to two possible pathogenic variants (E307K and L318S) in ClinVar.

Transglutaminase (TGM2) is a 77 kD protein that catalyzes
covalent bonding of glutamine and lysine side chains (Lorand
and Graham, 2003). In the heart, it is implicated in cardiomyocyte
development and signaling (Sane et al., 2007). The enzyme may
localize to the thick filament, based on observations of its
co-localization with the A-band in cultured, embryonic chicken
myoblasts (Kang et al., 1995). TGM2 possesses several IDRs span-
ning the entire protein as suggested by missing regions within its
crystal structures (Pinkas et al., 2007; Kanchan et al., 2015).
Bioinformatics studies by Thangaraju et al. indicate that human
TGM2 has more IDRs forming short linear motifs (SLIMs)
than in other species (Thangaraju et al., 2017). These SLIMs are
important as they enable TGM2 to interact with multiple protein
partners, which contributes to its multi-faceted functionality in
human (Thangaraju et al., 2017). PTM sites within potentially
disordered loops have been reported in the PhosphoSitePlus data-
base and include Y245, S250, T368, Y369, S415, and S4192. To
our knowledge, disease-associated mutations in TGM2 have not
yet been reported.

Synaptopodin 2 (SYNPO2) (aka myopodin) is an 118 kD pro-
tein involved in actin assembly during myofibril development
(Linnemann et al., 2013), where it stimulates actin polymerization
and aggregation (Chalovich and Schroeter, 2010). Synaptopodin 2
shares a high sequence identity of about 70% with fesselin. The
latter protein has limited secondary structure as measured by
CD and its large Stokes radius, which suggest that fesselin, and
potentially synaptopodin 2 given its sequence similarity, are
unfolded in their native state (Khaymina et al., 2007). Almost
100 PTM sites have been reported for SYNPO2 in
PhosphoSitePlus. While we did not identify SYNPO2 mutations
in its IDR that are attributed to cardiomyopathy, it has been
reported that the reduced expression of SYNPO2 destabilizes
myofibrils (Lohanadan et al., 2021).

Actin-binding LIM protein 1 (ABLIM1) is an 88 kD protein
that traverses the actin cytoskeleton (Roof et al., 1997) and links
the Z-disk binding domains of titin; the latter engagement is
believed to help regulate length-dependent activation of cardio-
myocytes (Stachowski-Doll et al., 2022). Although studies of the
mammalian ABLIM1 gene’s IDRs have not been reported in the
literature, the actin-binding plant LIM protein has been experi-
mentally confirmed to have an IDR linker connecting its two
LIM domains (Ma and Miao, 2020). Interestingly, this IDR medi-
ates self-aggregation of plant ABLIM proteins and thereby shapes
F-actin remodeling in plants (Ma and Miao, 2020). By extension,
the homologous region in the cardiac ABLIM1 may also be disor-
dered. We base this suggestion on our PONDR prediction of
ABLIM1, which indicates that the residues flanking the first and
fourth LIM domains, as well as the C-terminal fragments, are
IDRs (Fig. 3). Within these putative IDRs, 92 PTM sites are iden-
tified in the PhosphoSitePlus, although no variants have yet been
reported in the ClinVar database.

MAPIDs of the thick filament. The thick filament generates force
when the thin filament is activated. Myosin is the predominant
constituent of the thick filament, while titin and MyBPC3 link
the thick filament to the Z-disk (LeWinter and Granzier, 2010)
and thin filament (Flashman et al., 2004), respectively. It is now
appreciated that most hypertrophic cardiomyopathy (HCM)-
causing mutations are found in thick filament genes MYH7 and
MyBPC3 (Xu et al., 2010; Harris et al., 2011), although the thin
filament troponin complex presents additional HCM variants
(Willott et al., 2010). DCM mutations have also been identified
in MYH7 (Xu et al., 2010), MyBPC3 (Xu et al., 2010), and
TTN (Harris et al., 2011).

Myosin (MYH6-7 and MYL2,3,7) The cardiac myosins belong
to a super family containing numerous isoforms (Hartman and
Spudich, 2012). The myosin isoforms comprising the heavy
(MYH6 and MYH7) and light (MYL2, MYL3, and MYL7)
chain are the work-horses of myofilament contraction, leveraging
the hydrolysis of bound ATP to ratchet along exposed actin-
binding sites (Spudich et al., 1995). The heavy chains are approx-
imately 220 kD while the light chain isoforms are significantly
smaller at 20 kD. Our PONDR results in Fig. 3 indicate that
there are about 30 putative IDR regions in MYH6/MYH7, and
about five in MYL2/MYL3/MYL7. Roughly 130 HCM mutations
and 30 DCM mutations are reported in myosin, with most in the
MYH7 gene (Carniel et al., 2005; Alamo et al., 2017; Kim et al.,
2020). Consistent with those reports, the ClinVar database reports
346 pathogenic and likely pathogenic variants for these five myo-
sin genes. Of these, 152 reside within its potential IDRs (Fig. 3).
The cardiac myosins are also prime targets for PTMs and

Quarterly Reviews of Biophysics 9

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561



especially phosphorylation. According to PhosphoSitePlus, nearly
103 of these PTMs fall within potential IDRs for the cardiac
myosin genes (Fig. 3). This abundance of PTM sites likely helps
regulate thick filament assembly and contraction (Pfitzer, 2001).
In support of this, it has been reported that blunting myosin
light chain 2 phosphorylation leads to abnormal cardiac structure
and function in mice (Sanbe et al., 1999).

MYH7 is perhaps the most well-studied of the two heavy
chains, including several computational studies, as it is the pre-
dominant isoform in the human heart (Kelly et al., 2018). A
structural model of the human MYH7 complex, including its
myosin light chains, was built from tarantula skeletal muscle
thick filaments (Nag et al., 2017). The interactions between pro-
tein domains were verified via biochemical assays. Based on this
model, some HCM mutations are shown to destabilize the myosin
complex, which may explain their detrimental effects on cardiac
function (Nag et al., 2017).

One study of note aimed to infer the phenotype for VUSs in
well-folded regions of myosin (Toepfer et al., 2020). This study
indicated that known pathogenic variants disturb myosin’s func-
tional conformation dynamics through altering the myosin head
domain’s interactions. The proximity of five myosin VUSs to
these pathogenic variants was found to correlate with clinical phe-
notypes; namely, VUS located close to the head domain had more
severe clinical outcomes (Toepfer et al., 2020). It would be inter-
esting to determine if VUS within IDR regions near the head
domain had similar impacts on myosin function. In addition,
HCM mutations are reported in the S2 motif (R870H, E924K,
and E930Δ), which were shown to reduce myosin binding to
MyBPC3 (Singh et al., 2021). These mutations uncouple the
coiled-coil structure upon addition of denaturant as evidenced
by CD. These findings raise the possibility that other variants
may induce disorder that disrupts myosin function. Adjacent to
the S2 motif, the light meromyosin (LMM) region of myosin
also harbors disease mutations. Parker et al. (2018) combined
experimental assays and MD simulations to show that two disease
mutations, A1603P and K1617Δ, in the LMM motif reduce
coiled-coil helicity and lead to abnormal sarcomere assembly.
Large-scale gene sequencing has additionally identified mutations
in MYH6 and MYH7 that are associated with congenital heart
disease (Jin et al., 2017; Theis et al., 2021; Yu et al., 2021).

The myosin heavy chains contain several IDRs, which play
important roles in binding to actin (Robert-Paganin et al.,
2020). These IDRs have been more extensively studied in both
cardiac and non-muscle myosin isoforms (Risi et al., 2017;
Doran et al., 2020). Risi et al. constructed a structural model of
the cardiac actomyosin complex by fitting available high-
resolution myosin/thin-filament structures (von der Ecken et al.,
2016) to the cryo-EM density of the cardiac thin filament (Risi
et al., 2017). This model shows key structural motifs of the myo-
sin, such as the highly dynamic loop 4, which has direct contact
with the thin filament. More importantly, this cardiac model
shows that tropomyosin assumes a different angle compared
with that in skeletal model, which may explain the higher activa-
tion potential of cardiac filament by Ca2+ (Risi et al., 2017).
Similarly, a state model of the skeletal myosin/F-actin/tropomyo-
sin complex was built via a combination of docking/cryo-EM fit-
ting and MD simulations (Doran et al., 2020). This model
provides atomic-level resolution for the myosin motor functional
cycle and shows that the interactions between myosin’s dynamics
loop 4 (amino acids 354–380) and the thin filament are crucial for
myosin motor activation (Doran et al., 2020).

A complex between myosin VI (MYO6) with F-actin at 4.6 Å
via cryo-EM spectroscopy and MD simulations was reported
(Gurel et al., 2017) that could yield mechanistic clues for cardiac
myosin. Specifically, the study suggested that two disordered loops
form essential interactions with actin that stabilize the complex,
but were not resolved (Gurel et al., 2017). Importantly, one of
these loops (T392–P410) is homologous with cardiac myosins
and is a locus for several HCM-causing mutations (Gurel et al.,
2017). Based on studies in scallop striated muscle myosin, a
helix motif (C693–F707) undergoes a disorder-to-ordered transi-
tion during its functional cycle (Houdusse et al., 1999). The
human cardiac myosin (MYH7) likely exhibits the same transition
given that the motif is conserved. Similarly, the α-helical coiled-
coil structure of Myosin Va (MYO5a) only folds upon binding
to the myosin Va light chain (Wagner et al., 2006), which may
also occur in cardiac myosin. Along these lines, MD simulations
have shown that the N-terminal IDR of smooth muscle myosin
regulatory light chain undergoes a disorder-to-ordered transition
upon phosphorylation (Espinoza-Fonseca et al., 2007), highlight-
ing the importance of PTMs in regulating myosin function.

Atomistic structures of the myosin regulatory light chains
(MYL2 and MYL3) in complex with the cardiac myosin heavy
chain (MYH7) have been obtained via homology modeling
(PDB 5TBY (Alamo et al., 2017), Fig. 2). While the MYL2 struc-
ture is mostly complete with only a few unresolved N-terminal
residues, the MYL3 structrure is missing nearly 40 N-terminal
residues (Alamo et al., 2017), which suggests that the region is
intrinsically disordered. To our knowledge, IDR studies of the
myosin light chain isoforms have not been reported.

Cardiac myosin-binding protein C (MyBPC3) is a 137 kD pro-
tein that bridges the thin and thick filament (Oakley et al., 2004).
It is generally thought to simultaneously modulate myosin avail-
ability to bind actin as well as the availability of myosin-binding
sites on actin (Heling et al., 2020). In this capacity, its chief inter-
action partners are myosin, actin, and titin (Oakley et al., 2004).
Details continue to emerge, but there is a growing appreciation
that MyBPC3 maintains the thick filament ‘off states’ and thin fil-
ament ‘on states’ (Kampourakis et al., 2014) that prevail during
diastole and systole, respectively. At low Ca2+, MyBPC3 may
also sequester myosin heads in a super-relaxed state, which
describes a shift of their conformational ensemble from actin to
the myosin tails of the thick filament (Palmer et al., 2011).
Using skinned myocardial strips experiments, Tanner et al.
showed that phosphorylation of cardiac MyBPC3 accelerates the
rates of myosin detachment from thin filament (Tanner et al.,
2021), suggesting MyBPC3 plays a key role in regulating myofila-
ment force generation. The abundance of HCM-causing muta-
tions identified on MyBPC3 (Harris et al., 2011), including 153
pathogenic or likely pathogenic variants located in its predicted
IDRs (Fig. 3), have been the topic of studies using both experi-
mental and computational methodologies (reviewed in Sequeira
et al., 2014; Main et al., 2020).

Three MyBPC3 isoforms are found in muscle: fast skeletal,
slow skeletal, and cardiac. Although all three isoforms share a
common domain organization consisting of seven immunoglobu-
lin I-like (Ig) domains and three fibronectin 3-like domains
(Flashman et al., 2004), the cardiac isoform has several additional
motifs that are indispensable for its function (Howarth et al.,
2012). For example, MyBPC3’s ∼270 residue N-terminus com-
prising the C0–C1 domains is crucial for heart function, as dele-
tion of these residues resulted in DCM in a mouse model (Lynch
et al., 2021). The modular nature of MyBPC3 likely has the
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advantage that it allows the protein’s function to be tuned by
modifying its domain properties. Napierski et al. for instance
demonstrate that an MyBPC3 construct lacking the C0–C7
domains exhibits abnormal function, which is rescued by insert-
ing recombinant C0–C7 domains (Napierski et al., 2020).
Another unique motif in cardiac MyBPC3 is the ∼100-amino
acid M-domain that bridges its C1 and C2 domains (Howarth
et al., 2012) and binds myosin (Singh et al., 2021). The
N-terminal fragment of the M-domain was identified as an IDR
by CD and NMR (Howarth et al., 2012). Atomic force microscopy
(AFM) studies additionally indicate that its phosphorylation
reduces the M-domain’s extensibility and likely attenuates
MyBPC3’s ability to regulate cardiac muscle contraction (Previs
et al., 2016). Intriguingly, NMR studies have also identified a
highly flexible linker in the M-domain that serves as a major
binding site for the regulatory calmodulin (CaM) (Michie et al.,
2016), which we speculate may confer Ca2+-dependent conforma-
tional changes to its IDR. Additionally, Colson et al. (2016) used
MD simulations to demonstrate that M-domain (residues T255–
R357) phosphorylation reduced its structural disorder, stabilized
the C0/C1 domain folds, and exposed a cryptic protein–protein
binding site. This finding provides mechanistic insight into how
regulatory control via the PTMs within IDRs in the M-domain
impacts cardiac contractility.

In addition to the M-domain, other IDRs in MyBPC3 are
speculated to exist. AFM analyses from Karsai et al. indicate
that the force–extension relationship of the intact MyBPC3 is het-
erogeneous, with some regions extending more easily than would
be expected for folded Ig domains (Karsai et al., 2011). These
regions are believed to be disordered and likely correspond to
the linkers connecting MyBPC3’s folded domains. Doh et al.
(2022) showed that the flexible linker connecting the C4 and
C5 domains of MyBPC3 not only modulates the secondary struc-
ture content in the C4 and C5 domains, but also affects their rel-
ative interdomain orientations and associated kinetics (Doh et al.,
2022). By using MD simulations, they pinpointed specific resi-
due–residue contacts, and the local conformation changes of the
linker, that contribute to its modulatory role. Another study
focusing on the interdomain flexible linker from Potrzebowski
et al. (2018) combined Bayes inference and molecular simulations
to build structural models of an MyBPC3 construct including an
M-domain fragment, C2-domain, and a linker. The structural
models that best match the experimental SAXS data show diverse
interdomain orientations, demonstrating the flexible linker’s role
in supporting a broad conformation ensemble. Interestingly,
genome scale bioinformatic analysis has also revealed that
MyBPC3 splice isoforms tend to overlap with disordered regions
(Lau et al., 2019), which implicates the IDRs in myofilament
function.

Titin (TTN) is a behemoth protein (ca. 3816 kD) that secures
the thick filament to the Z-disk, by spanning one-half sarcomere
to the M-line (LeWinter and Granzier, 2010). Titin is highly mod-
ular in that it contains folded Ig domains interspersed with
unstructured regions such as PEVK motifs (Linke et al., 1998).
The PEVK repeats are intrinsically disordered, ∼28 residue motifs
enriched in proline, glutamic acid, valine, and lysine (Ma and
Wang, 2003). These IDRs contribute to titin’s passive elasticity
(Linke et al., 2002; Ma and Wang, 2003) and are substrates for
proteins like S100A1 (Yamasaki et al., 2001). It has been specu-
lated that S100A1 binding at these repeats modulates passive ten-
sion (Granzier et al., 2010). The PEVK repeat was observed to
have mostly disordered secondary structure (Poly II helix,

b-turn and coils) and larger Stokes radius using CD, gel perme-
ation chromatography, and gel electrophoresis, which confirm
its intrinsically disordered nature (Ma and Wang, 2003; Duan
et al., 2006). Interestingly, idiopathic restrictive cardiomyopathy
mutations have been found in the PEVK motifs as well as the
fibronectin-type III (FnIII) domains, of which the latter are also
likely to be disordered (Tarnovskaya et al., 2017). Mutations in
these regions were predicted via PONDR-FIT (Xue et al., 2010)
to alter their disorder (Tarnovskaya et al., 2017).

Beyond titin’s PEVK motifs, linkers connecting its modular
domains are likely IDRs based on predictions from PONDR
(Fig. 3). Simulations from the Schulten lab investigated the effect
of the PEVK domains and domain unfolding on tension, which
led to TTN’s characterization as an entropic spring (Lu et al.,
1998; Lee et al., 2007). In addition, steered MD simulations
have been extensively performed on TTN constructs consisting
of multiple Ig domains and interdomain linkers (reviewed in
Hsin et al., 2011). These simulations put forth a structural basis
for TTN’s impressive plasticity, how interdomain bending is
mostly mediated by flexible linkers, and how domain unfolding
may influence plasticity. Moreover, IDRs in TTN could also
serve as binding motifs for protein–protein interactions (PPIs).
As an example, the N2A titin isoform contains long IDR linkers
flanking its binding site for ankyrin repeat proteins that were
determined to be intrinsically disordered using NMR and
HDXMS (Zhou et al., 2021a). ClinVar and PhosphoSitePlus iden-
tify more than 400 pathogenic/likely pathogenic variants and over
300 PTMs within its predicted IDRs (Fig. 3). This concurs with
suggestions that its defects are responsible for the majority of
dilated cardiomyopathies (Herman et al., 2012).

MAPIDs of the Z-disk. The Z-disk is a central hub (Sols and
Solaro, 2021) that interfaces adjacent sarcomeres and sarcomeres
to organelle membranes (see Fig. 1a). It is a nexus for sensing
changes in mechanical demand and can communicate these
changes to myriad signaling pathways to regulate cardiac function
(Sols and Solaro, 2021). For this reason, it is also a prime target
for a number of regulatory mechanisms (Sols and Solaro, 2021).
Unlike the thin and thick filament for which the primary constit-
uents have largely been identified, proteins composing and inter-
acting with the Z-disk are continuing to be found.

α-Actinin (ACTN2) is a large (104 kD), dimeric protein that
interfaces with titin and actin filaments, where it contributes to
sarcomere assembly (Chopra et al., 2018). α-actinin cross-links
actin filaments with the Z-disk (Maruyama and Ebashi, 1965)
and also competes with calsarcin to bind calcineurin (CN)
(Frey et al., 2000; Seto et al., 2013). α-actinin’s structure is almost
entirely resolved at 3.5 Å resolution for residues Y19–L894 (PDB
4D1E (Ribeiro et al., 2014)). In its dimeric state, the structure does
not present disordered structural domains. However, PONDR
suggests α-actinin contains several IDRs, which perhaps may be
evident in the isolated monomeric structure. Thirty-four PTMs
have been reported by the PhosphoSitePlus, 17 of which are
located in the predicted IDRs (Fig. 3). Fourteen pathogenic or
likely pathogenic variants are reported in ClinVar, with five in
the predicted IDRs.

Crystallin alpha B (CRYAB) CRYAB is a 20 kD, ubiquitously-
expressed, small heat shock protein that regulates cellular
responses to stress (Dimauro et al., 2018). As a chaperone,
CRYAB associates with misfolded proteins to suppress their
aggregation (Dimauro et al., 2018). At least under ischemic con-
ditions, it binds with titin to potentially protect the protein from
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degradation (Golenhofen et al., 2002). The protein consists of
three domains, the N-terminal domain (NTD, residues M1–
S59), the α-crystallin domain (ACD, residues W60–K150), and
the C-terminal domain (CTD, residues Q151–K175) (Braun
et al., 2011). Although its complete structure is deposited at
9.40 Å resolution from cryo-EM as 24-meric alphaB-crystallin
(Braun et al., 2011), higher-resolution NMR structures reveal
only its ACD domain, while the NTD and CTD remain unre-
solved (Jehle et al., 2010). NMR experiments indicate that its
C-terminus is intrinsically disordered and may self-aggregate
(Baldwin et al., 2012); this aggregation is considered a patholog-
ical marker in histologies (Zhang et al., 2010). Three PTM sites
S19, S45, and S59 have been identified in its N-domain
(Chiappori et al., 2016). MD simulations reveal that phosphoryla-
tion of S59 alters a key interface for its multimeric self-assembly
(Chiappori et al., 2016). Interestingly, three cataract-associated
mutations were also found in this region, which were shown to
both alter self-assembly and its interaction with other proteins
(Muranova et al., 2020). In addition, nearly 10 other muscle
disease-associated mutations have been reported in its ACD and
CTD (Dimauro et al., 2018).

Enigma homolog isoform 2 (ENH2) is a 64 kD protein that
interacts with calsarcin in the Z-disk and α-actinin (Cheng
et al., 2010). As a splice isoform of the PDLIM5 gene (Huang
et al., 2020a), ENH2 contains a postsynaptic density protein of
95 (PSD-95) PSD-95/Discs large/Zonula occludens-1 domains
(PDZ) domain and three LIM domains. Of these, the PDZ
domain plays important roles in signal transduction through
PPIs formed with targets (Ivarsson, 2012). The LIM
domain has two zinc fingers and also engages a diverse range of
signaling pathways. The PDZ and LIM domains are generally
folded (Elkins et al., 2010), which is consistent with our
PONDR predictions of ENH2 in Fig. 3. The regions between
the PDZ and LIM domains are predicted to be IDRs, which agrees
with annotations from UniProt for EHN2. Emerging evidence
also suggests that even the folded LIM domain likely contains
IDRs, as an unpublished solution NMR structure of the LIM
domain (PDB 2DAR) exhibits highly dynamic N- and C-termini.

Knock-out of the enigma homolog protein leads to impaired
cardiac contraction and DCM in a mouse model (Cheng et al.,
2010). Top–down proteomics, which utilizes mass spectrometry
to characterize intact proteins, demonstrate that changes in
ENH2 phosphorylation at S118 occur in ischemia (Peng et al.,
2014) and HCM (Tucholski et al., 2020). PhosphoSitePlus sug-
gests 32 PTM sites in the predicted IDR regions, while ClinVar
does not report any pathogenic or likely pathogenic variants
that change the protein sequence.

Obscurin (OBSCN) is an 869 kD protein that links myofibrils
to the SR (Lange et al., 2009) and possibly to the cytoskeleton
(Geisler et al., 2007). Similar to other modular proteins like
titin and nebulin, obscurin consists of many folded domains
joined by disordered linkers (Young et al., 2001). MD simulations
have shown that the linkers between the modular domains of
obscurin are flexible, which allows the bridged folded domains
to sample broad conformational ensembles that likely contribute
to the protein’s elasticity (Whitley et al., 2019). In addition, a sol-
ution NMR structure of obscurin’s PDZ domain (residues R3614–
P3713, PDB 2EDH) is highly dynamic, which is consistent with
PONDR predictions in Fig. 3. Of the putative PTMs found in
PhosphoSitePlus (see Fig. 3), 54 are found within these IDRs.
While ClinVar reports just one pathogenic or likely pathogenic
variant that changes the sequence of the predicted IDRs, 16

cardiomyopathy-linked variants spanning the OBSCN sequence
were reported in 2017 (Marston, 2017). Given the many intermit-
tent IDR regions predicted in OBSCN (Fig. 3), these variants are
likely to be located within or immediately adjacent to IDR regions.
As OBSCN’s role in the sarcomere continues to be clarified, new
cardiomyopathy-linked variants may continue to emerge
(Marston, 2017).

Myotilin (MYOT) is a pseudonym for limb-girdle muscular
dystrophy 1A (LGMD1A) protein (Salmikangas et al., 2003).
The 55 kD protein localizes to the Z-disk and cross-links
α-actinin, where it is believed to contribute to the assembly of
actin filaments (Salmikangas et al., 2003). The N-terminal frag-
ment and C-tail of myotilin are predicted to be disordered and
contain binding sites for proteins such as α-actinin-2 and Z-
disk-associated, alternatively spliced, PDZ motif-containing pro-
tein (ZASP) (Puž et al., 2017). This prediction is in excellent
agreement with our PONDR scores for MYOT in Fig. 3. The pres-
ence of IDRs in MYOT is further confirmed by an unpublished
solution NMR structure of myotilin’s C-terminal fragment
(PDB 2KKQ) that shows highly dynamic regions. The IDR in
the N-terminal fragment of MYOT harbors several muscle
disorder associated mutations (Puž et al., 2017), and
PhosphoSitePlus reveals five PTMs in its predicted IDRs.

Myomesin 1 (MYOM1) is a 188 kD protein that together with
titin and obscurin form the dynamic ‘M’ band found between the
Z-disks of the cardiac sarcomere (Lamber et al., 2022). In this
arrangement, the protein plays an important role in sarcomere
organization (Lamber et al., 2022). Myomesin 1 is also suggested
to bind myosin (Lamber et al., 2022), which could directly impact
sarcomere contraction. Predictions using IUPred2A (Mészáros
et al., 2018) reveal that MYOM contains IDRs, while genome
scale bioinformatic analysis suggests MYOM splice isoforms fre-
quently overlap with IDRs (Lau et al., 2019). One of these splice
isoforms contains an insertion of an ∼100 residue elastic segment
(EH domain) at the center of the protein. This EH-myosin is
the main component of the M-band in higher vertebrates
(Schoenauer et al., 2011). Expression of the EH-myomesin is sig-
nificantly up-regulated in DCM patients (Schoenauer et al., 2011).
Moreover, AFM, transmission electron microscopy, and CD data
suggest that the EH segment is disordered and contributes to the
protein’s elasticity (Schoenauer et al., 2005). PONDR scores for
MYOM1 in Fig. 3 reveal multiple IDRs spanning the protein.
While PhosphoSitePlus reports 15 PTMs in the predicted IDRs,
no variants that alter its IDR sequences are reported in Clinvar.

Desmin (DES) is a 54 kD protein that anchors the myofibrils by
interconnecting the Z-disks to the cell cytoskeleton (Goldfarb et al.,
1998; Brodehl et al., 2013). It serves both signaling and structural
roles in cardiomyocytes (McLendon and Robbins, 2011). Mutations
in desmin are associated with desmin-related (cardio)myopathy,
which is also known as desminopathy (Goldfarb et al., 2008).
These defects are accompanied by aggregates of misfolded proteins
(McLendon and Robbins, 2011), which suggests potential correlations
between desmin structural defects and protein quality control.
Predictions using DISOPRED3 and DICHOT reveal that both the
N- and C-terminus of desmin are intrinsically disordered (Anbo
et al., 2019). This prediction is in agreement with our PONDR scores
(Fig. 3). Moreover, the C-tail IDR harbors the binding site for the
chaperone alpha B-crystallin (CRYAB) (Anbo et al., 2019).
PhosphoSitePlus and ClinVar report 22 PTMs and 47 pathogenic
or likely pathogenic variants, respectively, in the predicted IDRs.

Four and a half LIM domains 2 (FHL2) is a 32 kD protein that
serves as a biochemical stress sensor in the sarcomere, in part
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through its interactions with titin (Sheikh et al., 2008). In princi-
ple it may also regulate phosphorylase activity given its binding
interactions with CN phosphatase (Hojayev et al., 2012).
According to several studies (Chu et al., 2000; Okamoto et al.,
2013; Friedrich et al., 2014), the protein is believed to play a min-
imal role during normal cardiac development, but may limit the
development of cardiac hypertrophy. Our PONDR scores for
FHL2 show negligible IDR content, which is consistent with
annotations from UniProtKB. However, solution NMR structures
of its LIM domains are highly dynamic at their N/C-termini
(PDB 2D8Z, 1X4L, 1X4K) and therefore may be characterized
as IDRs. While no pathogenic/likely pathogenic variants that
change the IDR sequence have been reported in the ClinVar data-
base, PhosphoSitePlus reports five PTMs within the LIM termini.

Nebulin (NEB) and nebulette (NEBL). Nebulette belongs to the
nebulin family, but has a much smaller size of 116 kD compared
with the 773 kD nebulin (Bang and Chen, 2015). Nebulin is pri-
marily expressed in skeletal muscle while nebulette is highly
expressed in cardiac muscle (Bang and Chen, 2015). Nebulin
and nebulette are modular proteins that share a common building
block called the ‘nebulin repeat module’ (Bang and Chen, 2015).
Sequence comparisons between nebulette and nebulin from dif-
ferent species show that their basic building blocks are highly con-
served (Moncman and Wang, 2000). Similar to nebulin (Labeit
and Kolmerer, 1995), cardiac nebulette bridges actin to desmin
(Hernandez et al., 2016) and regulates Z-disk assembly
(Moncman and Wang, 1999). Studies of IDRs in nebulette have
not yet been reported, therefore we refer to work focused on its
homolog, nebulin.

Nebulin is a ∼1 μm long intrinsically disordered scaffolding
protein along the thin filaments, with a significant percentage
of its residues predicted as IDRs by the PONDR-VL3H algorithm
(Wu et al., 2016). Its IDRs are suggested to regulate sarcomere
assembly, given the close alignment between the periodicity of
high disorder scores with the positions of myosin-associated pro-
teins in the A-band (Wu et al., 2016). These disordered regions
most likely reside between the nebulin building blocks. PTM
sites have been identified in both nebulin and nebulette through-
out their sequences, while most of those sites tend to localize to
regions that share high homology (Moncman and Wang, 2000).
Missense mutations of nebulin are mainly related to nemaline
myopathy, while several mutations in nebulette are linked to fami-
lial and idiopathic dilated cardiomyopathy (Bang and Chen,
2015). Given the many intermittent IDRs in nebulin predicted
by us (Fig. 3) and by Wu et al. (2016), it is likely that some of
these disease-associated mutations fall within its IDRs. ClinVar
reports 61 pathogenic/likely pathogenic variants in the predicted
IDRs, in addition to 37 PTMs reported in the PhosphoSitePlus
database (Fig. 3).

Myopalladin (MYPN) is a 145 kD protein that bridges nebulin
(skeletal) or nebulette (cardiac) to α-actinin in the Z-disk (Bang
et al., 2001). Myopalladin is a modular protein that contains five
Ig-like domains (Bang et al., 2001); linkers connecting the modular
Ig-like domains are likely to be IDRs based on the PONDR data in
Fig. 3. Studies targeting these potential IDRs have not been reported
in the literature. However, genetic screens of patients with
cardiomyopathy have identified dozens of mutations in MYPN
(Duboscq-Bidot et al., 2007; Purevjav et al., 2012), of which two
fall within its IDRs. Several of these mutations cause disrupted
Z-disk assembly along with abnormal co-expression of MYPN
with α-actinin, desmin, and ankyrin (Purevjav et al., 2012). The
PhosphoSitePlus reports 35 PTMs in the predicted IDRs.

F-actin-capping protein subunit alpha-2 (CAPZA2) is a 33 kD
protein localized to the Z-disk that directs the orientation and
direction of actin during muscle fiber development (Solis and
Russell, 2019). It does so by regulating the growth of the barbed
end of actin filaments (Funk et al., 2021). To date, variants in
CAPZA2 have not been linked to cardiac disorders, although
there have been associations established with mental impairment
(Huang et al., 2020b). IDR-related studies have not been reported
for CAPZA2, although based on Fig. 3, there is evidence of IDRs
within residues M1–F20, D99–V124, and R259–W271. ClinVar
and PhosphoSitePlus report two pathogenic/likely pathogenic
variants (K256E and R259L) and one PTM (S4) located near
the predicted IDRs.

Miscellaneous MAPIDs of the sarcomere. Several proteins are
associated with the myofilaments but are not unambiguously clas-
sified into the Z-disk, thick filament, or thin filament assemblies.
Many contribute to sarcomere assembly, for instance through
cross-linking proteins, or play important signaling roles, such as
mechanosensing.

B type ankyrin (ANK2) is a 434 kD protein that bridges the
sarcomere M-line to the cell membrane via obscurin (Cunha
and Mohler, 2008), where it interacts with ion channels and trans-
porters. Its dysfunction is linked to a variety of electrical defects in
cardiac function (Sucharski et al., 2020). Its N-terminus contains
well-folded 24 ankyrin repeats, which form a groove that can bind
many IDR-containing membrane proteins (Wang et al., 2014). Its
C-terminus is intrinsically disordered as evidenced by little to no
secondary structure content in CD studies and its large Stokes
radius (Abdi et al., 2006). The ankyrin repeats are auto-inhibited
by several IDR fragments from its C-terminus, which was deter-
mined via binding assays and X-ray crystallography (Chen
et al., 2017). Two idiopathic restrictive cardiomyopathy mutations
are found in ankyrin’s IDRs (Tarnovskaya et al., 2017) in addition
to about 80 PTM sites via PhosphoSitePlus.

Cysteine-rich protein 3 (CRIP3) is a 24 kD protein and together
with CRIP1 and CRIP2, it forms the cysteine-rich intestinal pro-
tein (Crip) family (Hempel and Kuhl, 2014). CRIP3 and its
homolog CRIP2 are expressed in cardiovascular tissue (Wei
et al., 2011; Hempel and Kuhl, 2014), where they are speculated
to have a role in mechanosensing (Boateng et al., 2007). Its precise
localization in the sarcomere is not established, although the
STRING database of PPIs (Szklarczyk et al., 2019) suggests it
may associate with CAPZA3. CRIP3 is composed of two LIM
domains connected by a ∼30 residue flexible linker. This linker
is predicted to be an IDR by our PONDR scores (see Fig. 3).
Mutations have been identified in the cysteine-rich protein family
that are linked to dilated cardiomyopathy (Knöll et al., 2002). Two
PTMs, Y132 and S139, located in the second LIM domain are
reported in the PhosphoSitePlus database. No pathogenic or likely
pathogenic variants in CRIP3 have been reported in ClinVar.

Filamin-C (FLNC) is a 291 kD protein that binds nebulette and
ankyrin (Holmes and Moncman, 2008; Maiweilidan et al., 2011),
where it contributes to sarcomere assembly (Agarwal et al., 2021).
Filamin-C contains 24 folded repeats (Ig-like domains) in its
C-terminus (Nakamura et al., 2011). These 24 repeats form two
rod-like structures, with the first rod assuming an extended
chain configuration and the second, a relatively compact folded
configuration (Nakamura et al., 2011). These two rod configura-
tions are necessary for filamin’s dimerization and binding to actin
(Nakamura et al., 2011). Although IDR studies have not yet been
reported for filamin-C, an unpublished solution NMR structure
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of its modular domain (Fig. 4, PDB 2D7O) shows highly dynamic
N- and C-termini. PONDR scores for FLNC in Fig. 3 predict that
its IDRs are interspersed in the protein’s sequence. Based on these
predictions, 41 pathogenic or likely pathogenic variants and 36
PTMs are localized to the IDRs, based on the ClinVar and
PhosphoSitePlus databases, respectively.

Myozenin 2 (MYOZ2 or FATZ-2) is a 39 kD Z-disk protein that
binds to and inhibits CN, hence its pseudonym calsarcin (Frey
et al., 2000; Ruggiero et al., 2012). While activation of CN in
the adult heart is typically associated with cardiac hypertrophy
(Ruggiero et al., 2012), mutations in myozenin 2 that are linked
to cardiomyopathy and disorganization of the Z-disk may arise
independently of CN activity (Ruggiero et al., 2012). Sponga
et al. found that the MYOZ1 isoform, which shares around 36%
sequence identity with MYOZ2, is intrinsically disordered
(Sponga et al., 2021). This was rationalized by the MYOZ1 con-
structs having higher apparent molecular weights and high per-
centages of random coil conformations, as measured by size
exclusion chromatography and CD, respectively (Sponga et al.,
2021). They additionally obtained a diverse ensemble of
atomistic-resolution structures by fitting a pool of randomly gen-
erated models to SAXS data (Sponga et al., 2021). Lastly, using
binding assays, NMR, X-ray crystallography, and SAXS, the
authors revealed that the intrinsically disordered MYOZ1 forms
tight, fuzzy interactions with α-actinin (Sponga et al., 2021).
This raises the possibility that myozenin 2 may exhibit similar
interactions with cardiac α-actinin that are important to its func-
tion. Our PONDR scores for MYOZ2 indicate that the N-terminal
fragment and C-terminus of the protein are IDRs (Fig. 3).

Although no pathogenic or likely pathogenic variants were iden-
tified in the predicted IDRs of MYOZ2 from the ClinVar data-
base, two HCM mutations, S48P and I246M, have been
identified in the N- and C-termini, respectively (Ruggiero et al.,
2012). The PhosphoSitePlus database reports five PTMs in the
predicted IDRs (Fig. 3).

Spectrin beta, erythrocytic (SPTB) is a 247 kD protein that binds
to the actin filament (An et al., 2005) and is a major structural
component of the cytoskeleton (Winkelmann et al., 1990). SPTB
binds to α-spectrin to form hetero-tetramers (Long et al., 2007).
Although both α and β spectrins are largely characterized as coiled-
coil structures (Park et al., 2003), at least the N-terminus of α-spec-
trin and residues Q1898–E2083 of β-spectrin were determined to
contain IDRs, as determined by CD and NMR studies (Park
et al., 2003; Long et al., 2007). Spectrin isoforms bind at these
IDRs and gain helical character after binding (Long et al., 2007).
Our PONDR scores suggest that many IDRs span the SPTB
sequence, including those already confirmed to be intrinsically dis-
ordered (Long et al., 2007). Within these predicted IDRs,
PhosphoSitePlus and ClinVar report 13 PTMs and 18 pathogenic
or likely pathogenic variants, respectively.

Properties of MAPIDs and their characterization

Advantages and vulnerabilities of IDRs in MAPIDs
Nearly all the proteins we describe in section ‘Myofilament-associated
protein with intrinsic disorder (MAPID)s’ have regions that were
either determined by experiment to be IDRs or were suggested to
be disordered by PONDR. The abundance of these regions

Fi
g.

4
-
Co

lo
ur

on
lin

e

Fig. 4. Solution NMR structures of the common modular domains that are used as building blocks of Z-disk proteins. These structures show highly dynamic termini
and evidence of intrinsic disorder in the Z-disk. The PDB IDs are given in parentheses.
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suggests that they perform distinct functional roles relative to
their folded counterparts. We speculate there are several advan-
tages to these IDRs in myofilament proteins.

Native structure. IDRs’ roles in cellular signaling and
transcription are well-known (Gibbs and Showalter, 2015;
Clarke and Pappu, 2017). This involvement is likely due to their
transient structures that can afford functional advantages over
folded domains. For one, IDRs permit more rapid and efficient
regulation compared to their folded counterparts (Uversky
et al., 2005; Sugase et al., 2007). They can bind partners with
broad selectivity and significant avidity; avidity refers to enhanc-
ing binding through many low-affinity poses in equilibrium
(Wright and Dyson, 2015; Erlendsson and Teilum, 2021). These
low affinity interactions are frequently characterized by fast
association and dissociation kinetics that enable switch-like
changes in function (Wright and Dyson, 2015). For
IDR-mediated PPIs, there is likely also a desolvation energetic
advantage, as many IDPs have hydrophobic binding interfaces
and undergo apolar desolvation upon binding to targets (Gibbs
and Showalter, 2015).

IDRs are ubiquitous in myofilament proteins, which suggests
their importance in muscle contraction and regulation (Best,
2017; Clarke and Pappu, 2017). To quantify this propensity, we
used PONDR (Obradovic et al., 2003) to predict disordered
regions within the genes listed in section ‘Myofilament-associated
protein with intrinsic disorder (MAPID)s’. These results are sum-
marized in Fig. 3. We provide pie charts for each of the MAPIDs,
categorized into thin/thick filaments(s), Z-disk, and miscella-
neous, for which gray denotes folded regions versus red for
IDRs. The MAPIDs we consider in this review are predicted to
contain IDRs, though we recognize that some of these proteins
are known to be folded as isolated (TNNC1) or co-assembled
(ACTC1) proteins. These discrepant examples may just be due
to inaccuracies of the PONDR algorithm. Alternatively, they
may support the idea that all proteins are composed of both
folded and disordered regions, but to varying degrees
(Sormanni et al., 2017). For instance, the predicted IDRs in
TNNC1 all contain loops that resemble IDRs in the absence of
Ca2+ (Fig. S1).

We next show how the IDR primary sequence affects the
ensemble topology using an IDP state diagram developed by
Pappu and coworkers (Das and Pappu, 2013; Das et al., 2015;
Holehouse et al., 2017) (Fig. 3a). This diagram relies on two
inputs, f+ and f−, that reflect the fractions of positively and nega-
tively charged residues, respectively. These inputs classify IDRs
into five ensemble states that differ in compactness (see the legend
of Fig. 3 for detailed descriptions of these states). These state dia-
gram coordinates allow us to estimate the approximate topology
of the predicted IDRs (Figs 3b–3e). For instance, for MYL7 we
see that most of its IDRs fall within the R1 and R2 regions that
are characterized as ‘premolten globules’ and the coexistence of
globules and coils, respectively. However, one IDR is described
as a swollen coil topology. Other MAPID examples feature
IDRs that span diverse topologies. It is not yet understood if
the distributions of topologies are by chance or are shaped by
their respective roles in regulating myofilament function.

Post-translational modifications. PTMs provide a mechanism to
rapidly, and often reversibly (Jideama et al., 2006), perturb the
ensemble from its native (unmodified) configuration. Just as the
state diagrams show how an IDP’s charge distributions determine

its conformation ensemble topologies, they can be used to predict
how PTMs may alter the native ensemble. Phosphorylation is a
well-studied PTM from the broad variety of modifications
found among MAPIDs. Phosphorylation is a form of chemical
modification of tyrosines, serines and threonines that alters a
given IDR’s charge distributions, changes local/non-local electro-
static interactions (inter- and intrachain), and impacts solvation.
Moreover, IDRs usually have multiple phosphorylation sites
(Martin et al., 2016) that can amplify those changes. Human car-
diac TnI, for instance, has 14 PTMs that have so far been charac-
terized, of which the majority are phosphorylations (Biesiadecki
and Westfall, 2019). These PTMs are believed to be the corner-
stones of TnI’s regulatory role on myofilament function in
response to kinase activities (Biesiadecki and Westfall, 2019). Of
these, a host of phosphorylation sites on the disordered N-termi-
nus of TnI influence its conformation and are implicated in weak-
ening the Ca2+ sensitivity of TnC (Cheng et al., 2014; Lindert
et al., 2015; Zamora et al., 2016).

To illustrate this potential across the broad MAPID family, we
collected phosphorylation sites within predicted IDRs from the
PhosphoSitePlus database (Hornbeck et al., 2015) (see section
S1 for methodology). The statistics reported in Figs 3(b)–3(e)
demonstrate that MAPID IDRs are rife with PTMs, for which
only 5 out the 31 proteins (MYL3, MYL7, TNCC1, CRIP3,
FHL2) do not yet report PTM sites in the predicted IDR regions.
Genes with the most abundant PTMs include ANK2 and TTN
with 119 and 338, respectively. We next show how these phos-
phorylation sites may affect the IDRs’ ensemble properties using
the IDR state diagrams (Figs 3b–3e). To mimic the negative
charge brought by phosphorylation, we mutated the residues
identified as PTM sites to glutamic acids, which altered the IDR
charge distributions. The pink dots in Figs 3b–3e highlight the
corresponding changes in ensemble topology upon phosphoryla-
tion. Since the phosphate groups modulate the intrinsic charge
and charge density of the IDRs, the ensemble properties for the
modified proteins are shifted relative to the unmodified states.
For many examples, the modified versus unmodified proteins’ dis-
tributions fall in different phases of the diagrams. As an example,
the unmodified myosin heavy chains (MYH6 and MYH7) are dis-
tributed along the R2/R3 borders, which represent the coexistence
of random coils and globules. The phosphorylation-modified
states, however, are redistributed toward the R3/R4 border, sug-
gesting an ensemble change to relatively extended swollen coils.
Although it remains unclear which conformational ensembles
are important for myosin heavy chain function, we speculate
that topological changes may enable IDRs’ influence on myofila-
ment function to be tuned, such as to increase the likelihood of a
PPI or to enhance its avidity.

Single nucleotide polymorphisms. The apparent importance of
IDRs in myofilament function and PTM suggests that missense
mutations in these regions similarly perturb myofilament func-
tion. To assess this potential, we retrieved pathogenic and likely
pathogenic variants for each protein from the ClinVar database.
We focused on the protein-changing variants, e.g. those resulting
in missense mutations or deletions. Of the 36 proteins considered
for this study, only 8 proteins did not have reported protein-
changing variants. These include ABLIM1, CRIP3, FHL2,
SYNPO2, TGM2, TMOD1, MYL7, and ENH2. We report in
Fig. 3 disease-related mutations that reside in predicted IDRs.
Similar to phosphorylation, missense mutations that alter an
IDR’s intrinsic charge have the potential to alter the IDR
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topology. Those that conserve charge could still impact native
structure, depending on the side chain properties or backbone
torsion angles (Jumper et al., 2018). Here we find that potentially
pathological missense mutations are found in most of the MAPID
IDRs, which is consistent with observations made for proteins in
general (Vacic and Iakoucheva, 2012). In contrast to the seem-
ingly uniform PTM abundance across the core and associated
protein sets, the disease-related mutations are more prevalent in
the core proteins. This may imply that either disturbance of
core protein functions presents a more obvious phenotype than
the associated proteins, or simply that the core proteins have
been genotyped to a greater degree.

General challenges in characterizing native IDR structures
Bioinformatic approaches generally determine whether an amino
acid sequence would give rise to a disordered polypeptide, but do
not in general predict their physicochemical properties. Many of
these approaches rely on the observation that IDPs lack the
hydrophobic core typical of globular proteins, and are instead
enriched with charged and polar residues (Clarke and Pappu,
2017). These residues in turn determine the local/non-local intra-
chain interactions, solvent/protein interactions, and ultimately
IDP ensemble properties (Fig. 5). A key challenge for

understanding these interactions and properties in IDRs is that
their complete conformation ensembles must be resolved instead
of a single conformational state. This is because IDRs have rugged
potential energy surfaces that present numerous conformations in
equilibrium that rapidly interchange. Relatedly, unlike globular
proteins whose folding landscape is usually single-funneled,
IDPs’ energy landscapes are multi-funneled, which significantly
challenges structure prediction tools such as AlphaFold (Strodel,
2021). Altogether, the large number of poorly resolved, functional
conformations, and their equally important transition kinetics,
pose fundamental challenges for the understanding of structure
and function relationships among MAPIDs.

The folded and disordered continuum. Dividing proteins into
ordered and disordered states is an oversimplification. Recent
experiments, especially solution NMR techniques that can capture
both conformations and their dynamics, suggest that protein
ensembles are heterogeneous and contain both ordered and disor-
dered components (Sormanni et al., 2017). Similarly, IDRs can
contain fragments with folded character. These are called residual
structures and are of great importance to protein functions,
including binding to protein partners (Wicky et al., 2017). It is
increasingly recognized that proteins function as ensembles and
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Fig. 5. (a) Major secondary structural elements present in folded proteins like actin (PDB 6KN8 (Yamada et al., 2020)). (b) NMR structures of a MAPID, the MyBPC3
construct consisting of the M- and C2 domains (Michie et al., 2016), are shown as an example to illustrate the IDR ensemble. (c) Scaling of radius of gyration (Rg)
versus chain length for proteins at different states (Lazar et al., 2021). (d ) The IDP phase-diagram for classifying IDPs into five structural states (R1–R5) based on the
charge patterns (Holehouse et al., 2017).
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even the so-called native states of folded proteins consist of mul-
tiple conformations (Gibbs and Showalter, 2015). Therefore, an
IDR represents an extreme case of this paradigm (Gibbs and
Showalter, 2015), which we illustrate with two examples. As one
example, the switch peptide region of TnI (residues R148–
K164) is disordered in the absence of a target, but adopts an
alpha-helix upon binding Ca2+-activated TnC (Lindert et al.,
2015; Cool and Lindert, 2021). Another example is the M domain
of MyBPC3 (residues T255–R357), which retains a small tri-helix
bundle that is believed to bind myosin (Howarth et al., 2012;
Michie et al., 2016; Singh et al., 2021). Along these lines, loops
or linkers between folded elements like helices (such as TnC’s
loops), and N/C termini (such as TnI) are frequently disordered
(as has been predicted by PONDR in Fig. 3). The disorder inher-
ent in these linkers can influence the function of folded domains
(Sun and Kekenes-Huskey, 2022), as opposed to just serving a
passive role in linking the folded domains.

Modifiers of IDR ensembles. Physicochemical properties of IDRs
are encoded both by the number of covalently bonded amino
acids and non-covalent properties bestowed by their side chains.
Non-covalent interactions of an IDR with its environment help
determine its properties. We discuss these factors in detail below.

Covalent interactions The ‘size’ of an IDR is often character-
ized by its radius of gyration (Rg). Intuitively and generally, the
longer the IDR’s sequence, i.e. the number of covalently linked
amino acids, the larger its Rg. Analytic approximations for Rg as
a function of the numbers of amino acids are explained in section
‘Implicit/semi-analytic representations’. Independent of the non-
covalent effects discussed below, covalent character can influence
IDR properties in two ways. (1) Crosslinking of an IDR through
disulfide bonds will reduce an ensemble’s Rg. (2) Differences in
amino acid backbone distributions, often characterized by their
ϕ/ψ (Ramachandran) angles, can shape the IDR conformation
ensemble. Prolines and glycines, as an example, constrain and
relieve constraints respectively (Huang and Nau, 2003), on pep-
tide backbone conformations. More generally, the ϕ and ψ dihe-
dral angles assumed by contiguous amino acids support
secondary structure inclusive of beta sheets, helices (α-helix/
π-helix/3–10 helix), and turns, though non-covalent interactions
arising from hydrogen bonding ultimately stabilize these
structures.

Non-covalent interactions The abundance of polar amino acids
that favorably interact with a polar solvent, water, relative to
hydrophobic residues is a strong determinant of IDR character.
These properties constitute non-covalent effects that simply dic-
tate whether an amino acid prefers (thermodynamically speaking)
to interact with the solvent or with the solute protein.

Hydrophobicity and hydrophilicity Well-folded proteins com-
prise hydrophobic residues that are thermodynamically disfavored
to interact with polar solvents. For this reason, there is a thermo-
dynamic driving force for hydrophobic residues to coalesce into
compact domains that minimize polar solvent interactions. This
occurs despite the loss of entropy that occurs during protein fold-
ing (Cheung et al., 2002). Conversely, polar residues favor inter-
actions with both other polar residues and solvent. In many
cases, since the enthalpy of a polar amino acid’s interaction
with water or other polar residues are similar, maximizing
entropy favors unfolded states of the protein (Toal et al., 2014).
For this reason, IDRs tend to have an abundance of polar and
charged amino acids (Lieutaud et al., 2016).

Electrostatic effects A solute’s free energy of solvation depends
on its charge, the solvent dielectric, and the presence of other
charged solutes (Eq. (9)). Hence, the driving force for folding ver-
sus maintaining an intrinsically disordered, unfolded configura-
tion will depend on the solute’s environment and its
physicochemical properties (Fig. 6). Factors of the environment
include changes in ionic strength and temperature (see κ and T
in Eq. (9)), as well as the presence of crowders or organelles
that impact charges (qi) and dielectric constants (er).
Physicochemical properties can include reversible (protonation,
phosphorylation, and Ne-acetylation) and frequently irreversible
(oxidation, glycation, and Nα-acetylation) chemical changes to a
protein’s structure (Vu et al., 2018; Narita et al., 2019).

Ions Ionic strength changes follow the addition or removal of
ionic species (monatomic species such as K+ and Cl−, as well as
molecules like ATP4−), denaturants like guanidinium chloride,
or species that impact pH (discussed below). Ions primarily
modulate IDR structural properties in two ways: they directly
interact with IDR residues to modify net charges or screen intra-
chain electrostatic interactions (Uversky, 2009). In the former
case, binding ions such as Zn2+ change the net charge of a res-
idue or even ionically link residues to exert a direct impact on
an IDR’s secondary structure (Uversky, 2009). The dependence
of these factors on ion types has been reported in Wicky et al.
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Fig. 6. Schematic of transient and covalent influences on IDR structure. Ions can screen intramolecular electrostatics or directly coordinate with charged residues.
pH affects the protonation state of ionizable residues (e.g. histidine). Phosphorylation introduces negative charges into the sequence. For crowding, many factors
such as size and surface charges of crowders, and volume fraction affect IDR structure (Eq. (7)).
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(2017). Namely, the authors found that the residual structures
of an IDR in its isolated state and the transition state for binding
are sensitive to different types of ions, resulting in altered asso-
ciation and dissociation kinetics. Similarly, ions can bind to and
interfere with the dynamics of mobile loops in proteins, as was
shown for the binding of Ca2+ to titin’s Ig domains (Kelly
et al., 2021). In addition, ions can screen electrostatic interac-
tions, which is common in physiological conditions. The extent
of this effect as a function of ionic strength can be estimated via
the Debye–Huckel model (Eq. (9)). At high ionic strength, ions
can have a ‘salting-out’ effect that reduces amino acid solubility.
This effect is dependent on the type of ion (Hofmeister series)
(Wohl et al., 2021).

pH The pH quantifies the balance of H+ and OH− ions in sol-
ution. IDR ensemble properties can be altered by pH through
changing the protonation of ionizable amino acids or ionic
strength (Sun et al., 2020). Protonation changes in turn alter an
IDR’s charge distribution and salt-bridges. Ionization state
changes are most apparent in very acidic or basic conditions,
where dramatic structural changes may be evident (Uversky,
2009). The PEVK repeats of titin exemplify this effect, as it
shows a pH-dependent compaction of its structure (Manukian
et al., 2022). An IDR prediction tool named DispHred has been
developed to characterize disorder propensity as a function of
pH (Santos et al., 2020).

Crowding Crowders refer to molecular and subcellular material
that vary in terms of charge density, volume, capacitance (mem-
branes), and internal dielectric constants (Fig. 6). Crowders can
modify an IDR ensemble (Banks et al., 2018), by altering the
free energies of the unfolded, solvated states. In a dilute solution,
configurational entropy is maximized (reducing the free energy)
as a polymer disperses into the medium. In the presence of crow-
ders, the space within which the polymer can disperse is reduced,
which in turn reduces the entropy gain. Hence, crowding can shift
the balance between folded and unfolded states, simply by reduc-
ing the free volume that a polymer can occupy. Along these lines,
it is intriguing that the spacing between myofilaments changes
occurs during contraction, which in principle could modulate
the free volume available to MAPIDs (Irving et al., 2000). An
excellent review on the topic of how crowders influence protein
thermodynamics was published by Zhou (2008).

Post-translational modification (PTM) Post-translational mod-
ifications represent chemical (covalent) changes to protein struc-
ture that typically alter the non-covalent properties of an IDR.
These can include increasing the size of an amino acid, its charge,
and even modify inter-/intraprotein contacts. PTMs provide a
reversible mechanism for rapid modulation of a protein’s struc-
ture, protection against reactive species, and tagging for degrada-
tion or subcellular transport (Vu et al., 2018). IDRs usually have
multiple phosphorylation sites (Martin et al., 2016), which pro-
vides a reversible means to alter a protein’s charge distribution,
local and non-local electrostatic interactions, and solvation ther-
modynamics (Martin et al., 2016). However, at least in some
cases, global properties of IDRs such as the radius of gyration
are insensitive to phosphorylation owing to compensatory
changes in intrachain interactions (Martin et al., 2016). This sug-
gests cell signaling may recognize local changes in sequence and
charge, rather than changes in the global structure of the confor-
mational ensemble. For example, many IDRs have SLIM
regions that are used for binding protein targets. Since PTMs
are abundant among IDRs and approximately 2000 SLIMs have
already been identified (Lindorff-Larsen and Kragelund, 2021),

we speculate that PTMs could be an important mechanism for
toggling the availability of SLIMs for target binding.

A well-studied example of PTMs among MAPIDs include
phosphorylation of TnI at Ser22/23 in its N-terminal IDR,
which alters TnI binding to TnC (Hwang et al., 2014). Another
includes MyBPC3, for which phosphorylation impacts myofila-
ment contraction by altering its interactions with actin (Previs
et al., 2016). In recent years, broad data sets of PTMs in
MAPIDs have been identified through bottom-up (proteolytic
digestion before mass spectrometry) (Kooij et al., 2014) and
top–down (digestion-free) (Zabrouskov et al., 2008) mass spec-
trometry approaches. Extensive reviews of PTM types are in the
literature (Deribe et al., 2010; Prabakaran et al., 2012), but their
impacts beyond phosphorylation and oxidation have not been
extensively investigated in myofilament proteins, much less
MAPIDs. This knowledge is critical for understanding both regu-
latory and dysregulated functions of proteins with IDRs (Uversky,
2014), including MAPIDs.

Challenges specific to MAPIDs
Many challenges have stymied the characterization of IDRs in
MAPIDs. The staggering size of some myofilament proteins is
one such challenge. Titin, as an example, consists of approxi-
mately 34 000 residues, of which nearly 35% of its primary
sequence is predicted to be intrinsically disordered by PONDR
(Obradovic et al., 2003) (Fig. 3). However, extensive simulations
and experimental techniques that are commonly used to probe
IDRs (Robustelli et al., 2020; Chang et al., 2021; Ding et al.,
2021) are best suited for much smaller proteins. Therefore,
many studies of intact MAPIDs are limited by the large number
of disordered residues, as well as the likely presence of multiple
disordered regions within a single protein.

It is also recognized that the in vitro environment complicates
the identification of IDRs. The myofilament is a complex struc-
ture consisting of dozens of proteins that function interdepen-
dently. As an example, actin has a well-folded structure in
complex with troponin, and tropomyosin as shown in the crystal
structure resolved by Yamada et al. (PDB 6KN8 (Yamada et al.,
2020)). At the same time, actin exhibits promiscuous target bind-
ing that is a signature of IDPs (Povarova et al., 2014) and is also
predicted to contain several IDRs (Turoverov et al., 2010;
Povarova et al., 2014). In addition, actin uses chaperones to fold
onto the thin filament (Grantham, 2020). These observations sug-
gest that the presence of other accessory proteins in an MAPID’s
environment can dictate the extent of its folding.

IDRs also often undergo disordered-to-ordered transitions,
such as during a coupled binding and folding process (Sugase
et al., 2007). The C-terminal region of TnI provides an excellent
example of this phenomenon. When the N-terminal domain of
TnC is free of Ca2+ during diastole, its hydrophobic domain is
closed and thus unavailable to bind the TnI C-terminal domain.
This TnI domain therefore remains unbound and assumes an
intrinsically disordered ensemble as determined via NMR
(Julien et al., 2011). At saturating calcium during systole, TnC’s
hydrophobic domain is unveiled and supports binding of the
TnI ‘switch’ peptide, during which the region folds into an alpha-
helix (see Fig. 5a, e.g.). Modeling these processes is non-trivial
and often suffers from force field inaccuracies and sampling
insufficiency (Pietrek et al., 2020).

Lastly, there remains a challenge of relating computation-
predicted IDR ensemble properties to experimental probes of
the myofilament. A main reason for this is that there are spatial
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and temporal gaps in the resolution of experimental versus com-
putational data sets. We refer to our experience with TnI binding
to TnC, where ultimately the properties of TnI’s conformational
ensemble determine its experimentally observed affinity to TnC
(Siddiqui et al., 2016). Although multi-state models that take
molecular-level IDR descriptions as inputs are helpful in predict-
ing myofilament observables like binding affinity (Siddiqui et al.,
2016; Sun and Kekenes-Huskey, 2020), these models are often
system-specific and difficult to generalize to other IDR-driven
processes.

Part 2: computational modeling and characterization
of MAPIDs

In this part, we overview the state-of-the-art computational meth-
ods used to characterize IDRs and IDPs. We organized this sec-
tion as a potential workflow for an investigator to characterize a
newly identified IDR. Hence, we divide these approaches into
those targeting ensembles of IDRs in steady state (section
‘Computational methods for predicting conformation ensembles
of isolated MAPIDs’), the kinetics of intramolecular dynamics
(section ‘Computational methods for predicting intramolecular
dynamics of MAPIDs’), and complex assembly (section
‘Computational methods for predicting the MAPID
co-assembly’). In each section, we motivate the specific challenge
for each type of approach with a brief synopsis of relevant exper-
imental techniques, since excellent reviews of experimental meth-
ods for IDRs are readily available (see Gibbs and Showalter, 2015;
Schramm et al., 2019). These synopses are followed by detailed
summaries of commonly used computational approaches and
their applications to MAPIDs, when available.

Computational methods for predicting conformation
ensembles of isolated MAPIDs

Problem and application
A primary goal in the characterization of proteins with IDRs is to
describe their structure and physicochemical properties under
equilibrium and steady-state conditions. We distinguish this chal-
lenge from that of assessing intraprotein kinetics and intermolec-
ular assembly that we discuss in subsequent sections.
Characterizing the steady-state properties of isolated IDRs typi-
cally entails describing the spatial extent of the conformation
ensemble, the predominant conformations forming the ensemble,
as well as the secondary, tertiary, and quaternary structure of the
conformations. Also of interest is how the molecular and environ-
mental factors summarized in section ‘Modifiers of IDR ensem-
bles’ alter the ensembles’ properties. These insights provide an
initial foundation for understanding the biological role of
MAPIDs. Such is the case for studies seeking to characterize the
disordered switch region in TnI that primes its interaction with
TnC (Lindert et al., 2015; Siddiqui et al., 2016; Cool and
Lindert, 2021). Equilibrium properties like the shape of an
IDR’s ensemble can impact physiologically important parameters
such as myofilament length (nebulin (Wu et al., 2016)) and pas-
sive tension (titin PEVK motifs (Yamasaki et al., 2001)). The
ensemble’s shape also impacts the ability to assemble macromo-
lecular structures or bind targets (discussed further in section
‘Computational methods for predicting the MAPID co-assembly’)
to engage in PPIs, such as TnC binding to TnI (Metskas and
Rhoades, 2015; Siddiqui et al., 2016; Cool and Lindert, 2021).

Experimental techniques
The state-of-the-art for the experimental characterization of IDPs
has been robustly reviewed (see, e.g. Gibbs and Showalter, 2015;
Schramm et al., 2019), therefore here we briefly introduce meth-
ods that are commonly used in tandem with computational
approaches. Among these include SAXS, NMR, CD, hydrogen/
deuterium exchange mass spectrometry (HDXMS), and FRET.
Generally, SAXS provides information on gross protein shape
and compactness, CD assesses the relative abundance of second-
ary structure content, NMR and HDXMS can monitor conforma-
tional dynamics, and FRET can probe quaternary structure or
oligomerization (Schramm et al., 2019; Metskas and Rhoades,
2020). In addition, cryo-EM and atomic force techniques have
also been used to study IDP oligomerization and mechanical
parameters (Karsai et al., 2011; Mostofian et al., 2022). These
methods can also be used in combination. Because the aforemen-
tioned methods are priorly used for probing equilibrium proper-
ties of IDRs, we extensively discuss the fundamentals of each
technique in this section. Specific applications of these methods
to the kinetics of IDR ensembles and kinetics are discussed briefly
in subsequent sections of the review.

Size-exclusion chromatography. Size-exclusion chromatography is
used to separate proteins by their sizes according to their elution
time in a porous column. The elution time of a protein is related
to its Stokes radius:

Rs = kBT
6phD

(1)

where η is the solvent’s viscosity, D is the diffusion coefficient, kB
is Boltzmann constant and T is temperature. Proteins with the
same mass but larger Stoke radius will diffuse through the column
instead of being captured by its porous interior and thus elute ear-
lier than would be predicted from the protein mass alone
(Schramm et al., 2019). A larger Stokes radius is indicative of
an unfolded protein relative to a folded protein of a similar size.
This method has similar advantages and disadvantages relative
to electrophoretic probes of mobility discribed next.

Rg is a commonly used metric to assess the size of an IDP.
Although the Rg and the Stokes radius (Rs) are typically measured
by different methods (static scattering measurements for Rg and
dynamic light scattering for Stoke radius, respectively), they are
intrinsically related (Tande et al., 2001). For a hard sphere, Rg/
Rs≈ 0.77, and this ratio changes with the aspect ratio of the poly-
mer. A rod-like polymer can have a ratio of up to 1.27 (Tande
et al., 2001). Size exclusion chromatography has been used
quite extensively for MAPIDs. These applications include probes
of titin’s PEVK motifs (Duan et al., 2006) and the disordered
C-terminus of ankyrin B (Abdi et al., 2006), as well as assays
using fesselin, a homologue of synaptopodin 2 (Khaymina
et al., 2007), and FATZ-1 (Sponga et al., 2021).

Gel electrophoresis. Gel electrophoresis leverages the principle
that proteins with different molecular weights and net charges
have different mobilities in an applied electric field. There are
two kinds of gel electrophoresis: (1) native gel electrophoresis,
and (2) SDS-PAGE (sodium dodecyl sulfate–polyacrylamide gel
electrophoresis). For SDS-PAGE, the protein’s intrinsic charges
are masked by the sodium dodecyl sulfate. This masking enables
all protein components to adopt similar charge-to-mass ratios,
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thus proteins are separated solely based on their molecular mas-
ses. In the native gel, proteins migrate in their native states; there-
fore, the migration is affected by the protein’s intrinsic charge,
size, and folding state (Arndt et al., 2012).

Both strategies are useful tools for IDP studies. IDPs usually
have larger apparent molecular masses than would be expected
for a folded protein due to (1) their unique residue compositions,
e.g. high percentages of charged residues and less hydrophobic
residues, which make them bind less strongly to SDS, thus they
migrate slower, (2) their unfolded states yield large Stokes radii,
and (3) high proline content that leads to stiff conformations
(Schramm et al., 2019). Therefore, SDS-PAGE measurements of
mobility are commonly used to probe whether a given protein
has intrinsically disordered content.

The native gel is useful to infer the binding and folding of
IDRs. As an example, Neirynck et al. probed how the CCT chap-
erone folds actin using native gel electrophoresis (Neirynck et al.,
2006). In that experiment, an alanine scan was performed on
actin, whereby amino acids speculated to bind the chaperonin
were mutated to alanine to assess if the binding interactions
were compromised. The mutagenesis of amino acids that were
directly involved in chaperone binding was identified by their
impact on the electrophoresis of the variant actin relative to
wild-type (Neirynck et al., 2006). A primary advantage of gel
electrophoresis for assessing IDR characteristics is that it is a
straightforward and inexpensive technique to perform. The
main disadvantages are that these analyses do not directly provide
structural insights and the migration-based assessments of IDRs
are qualitative. There are other factors such as detergent binding
that can also affect migration (Rath et al., 2009).

Circular dichroism (CD). CD is a technique that relies on the
polarization of incident light through a sample. In the context
of protein structure determination, secondary structures such as
α-helices and β-sheets (see Fig. 5) rotate light at different angles.
Hence, the secondary structure content can be monitored in IDPs
to determine unfolded to folded transitions or partially folded
domains in an IDR. The primary advantage is that CD can
work with small concentrations of proteins with wide-ranging
sizes. A disadvantage is that CD spectra of β-sheet structures
are quite broad and overlap with α-helices (Micsonai et al.,
2015), thus limiting the analysis to qualitative assignment of sec-
ondary structures. CD has been used for probes of many
MAPIDs, including titin’s PEVK motifs (Ma and Wang, 2003;
Duan et al., 2006), ankyrin B’s C-terminus (Abdi et al., 2006), tro-
pomodulin’s intrinsically disordered N-terminus (Greenfield
et al., 2005), and for FATZ-1 (Sponga et al., 2021). Other exam-
ples are listed in Table 1.

Small-angle X-ray scattering (SAXS). SAXS is an approach that
measures the scattering of X-rays upon colliding with a solute
in solution. In most applications, SAXS data are reported in
Guinier plots that summarize the intensity of scattered X-rays ver-
sus the scattering vector. The radius of gyration (Rg) is readily
obtained from this analysis, which lends itself to the assessment
of IDR sizes (Zheng and Best, 2018):

ln
I(q)
I(0)

= (−R2
g/3)q

2 (2)

where q is the scattering vector, I(q) is the SAXS intensity at the

scattering vector, q. I(0) is the intensity when q = 0. The I(q) pro-
file from the Guinier plot also exhibits profiles that can indicate a
protein ensemble’s shapes, such as spherical versus oblong (Grupi
and Haas, 2011). A popular SAXS-based IDR ensemble genera-
tion strategy, called the ‘ensemble optimization method (EOM)’
(Bernadó et al., 2007), has been developed for which conforma-
tions are picked from a pool of conformations randomly gener-
ated by simulation to match SAXS data. Advantages of this
method are that it is a label-free technique that can yield struc-
tural information for arbitrarily large proteins and macromolecu-
lar complexes. A chief limitation of the method is that access to a
synchrotron is needed for an X-ray source. Examples of MAPIDs
characterized by SAXS include FATZ-1 (Sponga et al., 2021) and
the M-domain of MyBPC3 (Michie et al., 2016).

Fluorescence spectroscopy. The intrinsic fluorescence of aromatic
residues, namely tryptophan and to a far lesser extent tyrosine
and phenylalanine, can be measured using fluorescence spectro-
scopy. Changes in fluorescence indicate differences in the
amino acids’ environment (Ghisaidoobe and Chung, 2014),
such as due to folding or the binding of targets. For instance, tryp-
tophans buried inside the hydrophobic core of folded proteins are
brighter and blue-shifted relative to those exposed to aqueous sol-
vent. Upon solvent exposure of tryptophans due to unfolding, the
emission spectrum red-shifts and dims (Khaymina et al., 2007;
Yang et al., 2015). The advantage of this technique is that there
is no need to introduce extrinsic fluorescent probes and generally
fluorimeters are inexpensive. Disadvantages include the low
extinction coefficient that results in dim signals and ambiguity
when more than one fluorescent species is present. Intrinsic fluo-
rescence has been applied to synaptopodin 2’s homolog fesselin to
show that the fluorescent signals of the tryptophan residues have
maxima around 334 nm, suggesting that those residues are
solvent-exposed and therefore the protein’s native state is
unfolded (Khaymina et al., 2007).

Förster resonance energy transfer (FRET). FRET is another
fluorescence-based technique frequently used in protein structure
characterization. The method relies on stimulating a donor fluoro-
phore at its absorption wavelength, after which it emits at
longer wavelengths. An acceptor fluorophore can absorb the energy
and emit the energy at an even longer wavelength. The strength of
this energy transfer decays as I(r) = I(0)/r6, where r is the distance
between donor and acceptor fluorophores. Given this rapid spatial
decay of the intensity, FRET is commonly used to measure 1–10
nm distances between probes. An additional advantage is that the
technique can use more than one pair of probes (Lee et al.,
2015). A disadvantage of the method is that a chemical or protein
construct, such as green fluorescence protein, is typically intro-
duced to the protein of interest, which can alter its structure. A
study of IDRs in troponin I made extensive use of FRET to resolve
the positioning of their conformations relative to folded troponin C
structures (Metskas and Rhoades, 2015).

Nuclear magnetic resonance spectroscopy (NMR). NMR-based
techniques have been extensively used to determine the structures
of modestly sized (commonly <30 kD (Xu et al., 2006)) isolated
proteins and protein/protein complexes at Angstrom-level resolu-
tions that can rival X-ray crystallography. The list of NMR-based
techniques amenable to probing IDPs is ever-growing (reviewed
in Schneider et al., 2019; Dyson and Wright, 2021). In short,
NMR leverages the interaction between an applied magnetic
field and the nuclear spins of atoms. The applied magnetic field
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splits into spectral lines, or energy levels, of different energies
(Zeeman effect). Those energies may shift depending on their
local environment (chemical shift). These properties enable one
to assign peaks in NMR spectra to specific nuclei types in func-
tional groups (typically hydrogen, carbon, and nitrogen), as well
as determine their proximity to other functional groups such as
aromatic rings. 2D heteronuclear NMR broadens this approach
by exciting different nuclei and accounts for the relaxation
times for coupled spins, which improves the ability to resolve
and assign peaks.

Excited nuclear spins can be transferred to nearby, coupled
nuclear spins (nuclear overhauser effect, NOE), which enables
the determination of distances between coupled nuclei. This
approach is generally more readily applied to folded proteins. In
complement, residual dipolar couplings (RDC)s, which measure
the angles between partially ordered magnetic nuclei and the
magnetic field (Prestegard et al., 2004), are also increasingly
used in IDP experiments (Fisher and Stultz, 2011). In addition,
order parameters that report on the mobility of bond vectors,
such as N-H, can also be measured from spin relaxation rates.
Overall, NMR spectroscopy offers a wide-array of techniques
that can be used to probe both steady-state and dynamic proper-
ties of protein conformation ensembles in IDPs (Schneider et al.,
2019; Dyson and Wright, 2021). Disadvantages of these
approaches include the need for large amounts of protein, sample
preparation such as labeling that can vary considerably in cost,
and expensive instrumentation.

NMR techniques for IDPs and proteins with IDRs have been
applied to several MAPIDs. Ma et al. used 2D H-H NMR
(TOCSY and ROESY) to probe the residual structure of PEVK
motifs in titin and how the disordered content changes with tem-
perature and ionic strength (Ma and Wang, 2003). Other applica-
tions used 15N-1H HSQC to investigate the secondary structure
content of tropomodulin’s N-terminal IDR (Greenfield et al.,
2005) and its binding site for tropomyosin (Greenfield et al.,
2005; Kostyukova et al., 2007). 2D 13C-13C solid-state NMR analy-
ses of Ca/Cb peaks of serine and alanine residues in the desmin
head domain revealed that approximately 80% of serine and 40%
alanine residues are in β-strand conformations, respectively
(Zhou et al., 2021b), suggesting the presence of both structured
and disordered elements (Zhou et al., 2021a). Applications of
NMR to MyBPC3 via 2D 1H-15N HSQC show that its
M-domain consists of an N-terminal IDR and a C-terminal folded
subdomain (Howarth et al., 2012). Heteronuclear NOE values of
each amide group and 15N T2 relaxation suggest that the linker
in the M-domain of MyBPC3 is highly dynamic and disordered
(Michie et al., 2016).

Other techniques. There is an extensive collection of less-
commonly used techniques for probing IDR structure. HDXMS
is one such example that measures the extent to which a proton
from a deuterated solvent is exchanged with those of the protein.
Amino acids that are exposed to the solvent will have higher deu-
terated protein content than those that are well-buried and iso-
lated from the solvent. Furthermore, highly mobile regions will
exchange more rapidly than rigid regions (Fanning et al., 2018).
The proton content is assessed via mass spectrometry and was
recently used to characterize disordered linkers in titin (Zhou
et al., 2021a).

AFM is commonly used to investigate the extensibility of pro-
teins under a traction force. Unfolded proteins or IDRs exhibit
more pliant force–length relationships relative to folded proteins.

This technique has been applied to titin’s PEVK motifs (Linke
et al., 2002) to discriminate between folded and unfolded regions,
as well as MyBPC3 (Previs et al., 2016).

X-ray crystallography is used to probe well-folded proteins
with unique conformations. While IDRs are generally not amena-
ble to this technique, those that undergo unfolded to folded tran-
sitions upon binding a target can be resolved. An example
application resolved the autoinhibited state of ankyrin, in which
its IDR tail was folded (Chen et al., 2017). Similarly, X-ray crys-
tallography was used to reveal the complex between α-actinin and
FATZ-1 (myozenin-1) fragments that contain IDRs (Sponga et al.,
2021). Lastly, for transglutaminase 2, X-ray crystallography was
used to infer that this protein has several IDRs, based on missing
structural information in the loop regions (Pinkas et al., 2007).
Other less commonly used techniques include electron paramag-
netic resonance, proteolytic degradation, and Fourier transform
infrared spectroscopy (Uversky, 2020).

Computational approaches
Computational approaches are important tools that complement
experiments in revealing molecular bases for IDR ensembles.
Key computational approaches are described below.

Bioinformatics approaches. An initial objective in IDR studies is
to identify regions in protein sequence data that may be disor-
dered. Significant advancements have been made in the area of
IDP and IDR prediction from amino acid sequenc alone. IDPs
feature unique sequence patterns including the enrichment of
charged and polar residues relative to globular proteins. This
impacts their ensemble compactness based on the charge distribu-
tion in the sequence (Das et al., 2015). They also tend to contain
more serine, glycine, and proline residues (Lieutaud et al., 2016),
of which the latter two impose different torsional constraints on
the protein backbone relative to the other amino acids (Krieger
et al., 2005). Additionally, IDRs tend to be depleted of aromatic
residues (F, W, and Y) (Povarova et al., 2014) and some hydro-
phobic amino acids (I, L, and V) (Lieutaud et al., 2016).
These sequence trends lend themselves to predicting the IDP pro-
pensity based on amino acid identities. Currently, there are tens of
web servers or stand-alone tools for IDP prediction based on
physicochemical properties, templates, metadata, and machine
learning (Liu et al., 2019). Others focus on the detection of
SLIMs important to binding IDRs to partnering proteins
(Lindorff-Larsen and Kragelund, 2021). These tools have compa-
rable performance, but can be dataset dependent (Liu et al., 2019).

There are also techniques for predicting structures for IDPs.
An IDP’s ensemble can be explicitly generated from sequence
via tools like flexible-meccano (Ozenne et al., 2012), which uses
basic conformational potentials derived from coil statistics
together with user-customized potentials. The tool directly gener-
ates IDP conformations which, with proper user-customized
potentials, can match NMR and SAXS measured IDP ensemble
properties. Qualitative attributes of IDPs structural states, such
as compactness and coil/globule properties, can be estimated
from its sequence via the IDP diagram from the Pappu lab
(Holehouse et al., 2017). It is important to note that although
being termed ‘intrinsically disordered’, IDPs commonly adopt par-
tially folded structures. These residual structures can serve as
molecular recognition fragments important to function (Gibbs
and Showalter, 2015). However, predicting these residual structures
is challenging as mainstream tools such as DSSP, STRIDE, and
KAKSI show significant discrepancies (Zhang and Sagui, 2015).
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Given their reasonable accuracy, inexpensive computational
expense, and user-friendly features, IDP prediction tools are rou-
tinely used to gain insight into structural disorder in myofilament
proteins, especially for those whose structural information is
scarce. As one example, bioinformatics approaches have been
used to predict the IDP regions of different TnI isoforms
(Hoffman et al., 2006) and concluded that the N- and
C-termini of TnI are intrinsically disordered across all isoforms.
A similar bioinformatic method was applied to the intact Tn com-
plex (TnI, TnC, and TnT) and disease-associated variants (Na
et al., 2016). This study revealed that all three components have
IDRs, even the well-folded TnC. Furthermore, the authors con-
clude that some disease-associated mutants reduce the disorder
of the Tn complex, due to localized disorder-to-order transitions
(Na et al., 2016). An additional example includes a study utilizing
two predictors that reveal that the C-terminus of desmin is an
IDR (Anbo et al., 2019). This IDR harbors the binding site for
alphaB-crystallin (CRYAB) according to IDEAL (Intrinsically
Disordered proteins with Extensive Annotations and Literature)
annotations (Fukuchi et al., 2012; Anbo et al., 2019).

Implicit/semi-analytic representations. Polymer theory can pro-
vide insights into IDP ensemble properties, such as the
end-to-end distance probability p(r). The most basic polymer
model ignores interactions between monomers and assumes
they are freely jointed (ideal chain model). This model yields
quantities like the mean squared end-to-end distance, ⟨R2⟩ and
radius of gyration, Rg, as a function of the number of monomers
(amino acids), N:

〈R2〉 = Nb2 (3)

〈R2
g〉 =

〈R2〉
6

(4)

where b, the Kuhn length, reflects the stiffness and local interac-
tions. Other models can avoid overlapping monomers (worm-like
chain (WLC) and excluded volume chain models) (Milstein and
Meiners, 2013). The WLC uses the persistence length, ζ, which
is approximately b/2, to give the mean squared end-to-end
distance:

〈R2〉 = 2zL0 1− z

L0
(1− exp(−L0/z))

[ ]
(5)

where L0 =NLb with Lb and N representing the length of an
amino acid and the number of amino acids, respectively. These
models, when coupled with FRET experiments, are particularly
useful for revealing chain compactness and dynamics of IDRs
(reviewed in Schuler et al., 2016).

To account for intramolecular steric effects and interactions
between monomers and solvents, the excluded volume concept
was introduced in Zimm et al. (1953). This led to the Flory theory
that quantifies competition between monomer/monomer and
monomer/solvent interactions in determining compactness. This
model accounts for excluded volume and entropic contributions
in estimating the free energy of a polymer. It yields an approxima-
tion of the form:

〈R〉 ≈ Nn (6)

where ν is a scaling parameter (ν = 0.6 is common for disordered
chains) (Grupi and Haas, 2011). Treatments based on Flory–
Huggins theory have been used to fit radii of gyration as a func-
tion of a solution’s crowded volume fraction and the overlap of
disordered chains (Soranno et al., 2014). Revised polymer models
that explicitly account for charge distributions and monomer
interactions, such as short-range repulsion and long-range elec-
trostatics interactions, are also available to better describe IDP
ensemble properties (reviewed in Ghosh et al., 2022).

Related to the concept of excluded volume is that of crowding,
which refers to the mixing of a solute in a solution composed
of solvent and other biomolecules. This is appropriate for the
cell cytoplasm, which has a free volume fraction of roughly 0.78
(Kekenes-Huskey et al., 2016). Along these lines, a theoretical
framework has been developed to predict the scaling of
an IDP’s compactness (⟨Rg⟩) with the free volume fraction ϕ in
the presence of hard sphere crowders (Kang et al., 2015):

〈Rg(f)〉 = 〈Rg(0)〉f (x) (7)

x ≈ 〈Rg(0)〉/(4p/3)1/3scf
−1/3 (8)

where ⟨Rg(0)⟩ is an IDR’s native compactness in crowder-free
solutions and σc is the radius of the crowder. While the exact sol-
ution of the scaling factor f(x) is not defined exactly, it is bounded
by x�≺ O(1) and x ≫ O(1) , which correspond to a decreasing
⟨Rg⟩ and a coil-to-globule transition as ϕ increases, respectively.

Electrostatic interactions can also dramatically alter the size of
a polymer. Here it is useful to define the electrostatic potential,
Vele, between two charged spheres representing residues i and j
that are separated by distance rij with point charges qi and qj
via the Debye–Huckel model (Chu and Wang, 2019):

Vele = KcoulB(k)
∑ qiqj exp (−rijk)

errij
(9)

In this expression, κ≡ λ−1, where λ represents the Debye
length, the distance over which electrostatic effects are most
strongly screened by electrolytes. The Debye length is formally
defined as l = �����������������

erkBT/
∑

i n
0
i q

2
i

√
, for which the denominator

reflects the solution’s ionic strength. B(κ) is an approximate cons-
tant for a dilute electrolyte concentration. While it is intuitive that
like- and unlike-charged residues will repel and attract one
another, it is evident from Eq. (9) that the ionic strength will dic-
tate the strength of these interactions. Namely, high ionic strength
attenuates electrostatic interactions, which thereby influences IDR
compactness.

The IDRs predicted in Fig. 3 either cap the N- or C-terminus
of a well-folded protein or link two well-folded domains. Here,
polymer theoretic models can be used to predict an ensemble’s
distribution about a folded protein or domain anchor. An
example model from Van Valen et al. (2009) provides an analytic
form for a binding domain linked to an anchor by an unstruc-
tured region. Here, the effective concentration, ceff, is estimated
via a Gaussian chain model (Van Valen et al., 2009):

ceff (R) = 3
4pjL

( )3/2

exp − 3R2

4jL

( )
(10)

where R is a user-provided distance between the polymer’s two
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ends and L is the linker length. The effective concentration of the
untethered domain at a given R can be used to estimate its likeli-
hood of binding a target (see section ‘Implicit and semi-analytic
representations’ Eq. (56); Siddiqui et al., 2016).

Explicit representations. All-atom simulations Molecular simula-
tions are commonly used to sample IDP conformations constitut-
ing an ensemble. Simulation-generated conformations enable
direct interpretation of an IDP’s structure–function relationships.
Molecular simulation methods can be categorized into Monte
Carlo and MD approaches. These forms of simulations are all
based on a Hamiltonian, H, for estimating the energy associated
with N particles, which is given by the sum of the system’s poten-
tials and kinetic energies. These particles can be linked through
bonding potentials. For example, the bonded potential of the
Amber force field (Weiner et al., 1984) consists of three energy
terms representing bond, angle, and dihedral terms:

Vbonded =
∑

i[bonds

kb,i(li − li,0)
2

+
∑

i[angles

ka,i(ui − ui,0)
2

+
∑

i[torsions

∑
n

Vn,i[1+ cos (nvi − gi)]

(11)

where li,0, θi,0, and γi are the bond length, angle value, and dihe-
dral phase angle at equilibrium, kb,i, ka,i, Vn are the force con-
stants, and n in the torsion term refers to the multiplicity. The
potentials associated with non-bonded interactions including
van der Waals (vdW) and electrostatics are commonly given by:

Vnon−bonded =Vele + Vvdw

=
∑
i

∑
j.i

qiqj
erij

+
∑
i

∑
j.i

Aij

r12ij
− Bij

r6ij

(12)

where rij is the separation between atoms (beads) i and j, qi, qj, are
point charges, and Aij, Bij are vdW constants of atoms i and j.

The parameters for the expressions are defined in a force field.
Force fields have generally been optimized for well-folded pro-
teins, thus early applications to IDPs presented artifacts including
overpredictions of compaction and secondary structure formation
(Henriques et al., 2015). As simulations of IDPs matured, correc-
tions to these force fields resulted in versions such as the Amber
ff99SB-ILDN (Lindorff-Larsen et al., 2010) that mitigate these
effects to a certain extent.

Monte Carlo and lattice simulations Monte Carlo (MC) algo-
rithms utilize random displacements of molecular coordinates
to identify the most thermodynamically favorable conformations.
MC approaches define a Hamiltonian similar to those in Eq. (11)
comprising bonded and non-bonded terms. At each iteration of
the algorithm, a new system is generated from the current state
(or initial state) by randomly displacing its coordinates. For the
Metropolis MC algorithm, if the new system {x}′ yields a total
energy that is lower than that of the previous state {x}, the new
state is stored as the current state. Otherwise, a new state is

accepted if (Earl and Deem, 2008):

Nunif (0, 1) , p (13)

with p = exp (− b[U({x}′)− U({x})]) (14)

where U({x}′) and U({x}) are the energies of the new and previous
state, respectively, and β = 1/kB T is the thermal energy of the sys-
tem. The random displacements can be constrained to a uni-
formly spaced grid (lattice simulation) or assume continuous
distributions. Metropolis MC simulations were recently used to
show that the conformation ensemble of an 81 amino acid IDP
transcription factor Ash1 from Saccharomyces cerevisiae in its
native and phosphorylated had similar radii of gyration (Martin
et al., 2016).

The simulation process accumulates an ensemble of conforma-
tions, e.g. X = {{x}1, {x}2, . . . , {x}n}, which can be used to com-
pute metrics such as an ensemble-averaged radius of gyration via:

〈Rg〉 = 1
|X|

∑
n[X

������������∑
i
||ri||2mi∑
i
mi

√√√√√ (15)

where ri and mi are the position and mass of atom i, respectively.
Because there is an energy associated with each conformation
from evaluating Eqs. (11) and (12) (above), one can compute
ensemble-averaged, thermodynamic quantities such as the free
energy, ⟨G⟩, using:

〈G〉 = 1
|X|

∑
i

G({x}i) (16)

where G({x}i) is the free energy for each simulated conformation,
such as from molecular mechanics calculations.

Molecular dynamics (MD) simulations MD entails minimiza-
tion and displacement of atoms according to forces, based on
Eqs. (11) and (12). Minimization techniques including steepest
descent and conjugate gradients move particle positions according
to the gradient of the potential energy surface (PES) until the sys-
tem energy is minimized (often local):

{x}N ′ = {x}N − g∇U({x}N ) (17)

where {x}
′
N and {x}N are the new and current configurations con-

sisting of N particles, respectively. ∇U({x}N ) is the energy gradient
at the current system’s configuration, and γ is the step size along
the gradient. This is done in order to reconcile bond and non-
bond energies that are incompatible with the force field.
However, for IDRs, minimization is generally likely to yield a sin-
gle, local minimum despite many states sharing similar energies.

Dynamic approaches temporally evolve a system by integrating
Newton’s equations of motion for each atom:

F({x}) = −∇U({x}) (18)

dv
dt

= F({x})
m

(19)

where F({x}) is the force acting on the system, v and m are the
atom’s velocity and mass. During the simulation, v and {x} are
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repeatedly updated at every time step δt:

vt+dt = vt + dtF({x}t)/m (20)

{x}t+d = {x}t + dtvt (21)

An initial guess for the system’s coordinates ({�r(0)}) may come
from the Protein Data Bank. Particle velocities, vi, are randomly
drawn from a Maxwell–Boltzmann velocity distribution to estab-
lish the system’s temperature:

p(vi) =
�������
mi

2pkT

√
exp − miv2i

2kBT

( )
(22)

where k is Boltzmann’s constant, T is temperature, mi and vi are
the mass and velocity of atoms i, respectively. Because the ensem-
ble generated by MD is a function of time, this technique is fre-
quently used to assess the kinetics of intra- and intermolecular
interactions, which we later describe in sections ‘Computational
methods for predicting intramolecular dynamics of MAPIDs’
and ‘Computational methods for predicting the MAPID
co-assembly’.

Similar to MC simulations, MD simulations yield trajectories
of conformations, X = {{x}1, {x}2, . . . , {x}n}. MD simulations
have been used to provide atomic resolution structural character-
izations of IDRs in MAPIDs. For example, unbiased μs-long
explicit MD simulations of the troponin complex with TnI
IDRs were conducted to study its dynamics, stability, intramolec-
ular interactions, and Ca2+ affinity (Cheng et al., 2014; Lindert
et al., 2015; Zamora et al., 2016). The N-terminal IDR of TnI
was shown to interact with TnC, whereupon the IDR’s phosphor-
ylation at S23/S24 reduces TnC Ca2+ affinity (Cheng et al., 2014;
Zamora et al., 2016).

Brownian dynamics (BD) simulations BD facilitates coarsening
of the system spatial resolution to lengthen the simulation time
steps and ultimately the duration of the simulation. This is
done by describing the influence of explicit solvent molecules
on the solute with a random force and a dissipative friction
term. In this way, the solute alone can be simulated without sol-
vent, which permits much larger simulation step sizes:

mv′ = −∇U(�r)− gv +
�����������
2gkBTn(t)

√
, n(t) = N (0, 1) (23)

v = −∇U(�r)/g+
�����������
2gkBTn(t)

√
/g, mv′ 
 0 (24)

where γ is a friction coefficient and N is a Gaussian distribution
of random variates with a mean of zero and variance of 1. The
latter equation represents an overdamped system, for which the
inertial terms are insignificant. As with MD, BD generates a tra-
jectory comprising protein conformations at successive time
points. BD has been used to reveal the ensemble properties of sev-
eral naturally occurring IDRs as well as engineered (Glu-Lys)25
IDRs (Ahn et al., 2022). When coupled with an appropriate inter-
action potential, such as the coarse-grained force field for proteins
(Ahn et al., 2022) and a Debye–Huckle model (Eq. (9)), molecular
properties such as inter-residue distances, the IDP’s aggregation
propensity, and ionic strength effects can be determined (Ahn
et al., 2022). BD has also been widely used to explore both the
intramolecular and intermolecular dynamics of IDRs, as will be

discussed in sections ‘Computational methods for predicting
intramolecular dynamics of MAPIDs’ and ‘Computational meth-
ods for predicting the MAPID co-assembly’, respectively. This
technique has been applied to the myofilament proteins TnC
and Tm. Specifically, BD was used to estimate Ca2+ binding
rates to TnC (Lindert et al., 2012a) and to simulate the binding
of Tm to actin (Aboelkassem et al., 2019).

Coarse-grained (CG) simulations CG represents another strat-
egy of reducing a system’s degrees of freedom to improve sam-
pling efficiency. In general, CG schema treat each residue as a
single bead located at the Ca atom, or two beads with the second
bead representing a residue’s side chain. One such CG scheme is
the Martini model (Marrink et al., 2007) that provides an inter-
mediate representation between CG and all-atom (AA). This is
done primarily by representing large side chains by more than
two beads. Compared to AA simulations, the degrees of freedom
in CG are greatly reduced and thereby enable larger time steps
than all-atom simulations.

CG molecular dynamics simulations have been used with IDPs
(Ramis et al., 2019), such as for investigating IDP-aggregation or
liquid–liquid phase transition (LLPS) phenomena (Benayad et al.,
2021). LLPS describes the tendency of IDRs to form multi-valent
PPIs with themselves or with other proteins. This aggregation can
enable assemblies to phase separate from the surrounding solu-
tion (Harmon et al., 2017). It is believed that this phenomenon
is used in biological systems to sequester biomolecules (Zhao
and Zhang, 2020). To model this behavior, lattice and CG simu-
lations have been proposed for describing phases of multi-valent
protein assemblies (Harmon et al., 2017). Recently, Sponga et al.
showed that in the sarcomere, FATZ-1 contains IDRs that con-
dense into a liquid phase, which may provide a new mechanism
to interact with α-actinin (Sponga et al., 2021). These models
can benefit from coarse-graining the Hamiltonian to include
only bond, Lennard-Jones, and bending potentials (Garaizar
et al., 2020). In parallel, new force fields are also being developed
to better align these simulations with experiments (Regy et al.,
2021; Wohl et al., 2021).

Enhanced sampling techniques One of the most significant
challenges in conducting simulations of IDRs arises from the pro-
teins’ conformational diversity and expansive timescales to match
experimentally measured ensemble-level properties. This chal-
lenge stems from two limitations of MD methods: (1) force
field accuracy and (2) sampling efficiency. A variety of force fields
have been developed to improve IDR simulation accuracy, such as
the ff14IDPSFF (Song et al., 2017). Experimental constraints are
also frequently introduced to restrict the conformational space
sampled during simulation, thus focusing the search on biologi-
cally relevant states (see reviews Bhattacharya and Lin, 2019;
Gong et al., 2021; Wang et al., 2021). Brute force, sub-ms length
AAMD simulations have been performed to describe isolated IDP
ensembles and binding mechanisms to partners (Robustelli et al.,
2020; Chang et al., 2021). However, these simulations are either
performed on specialized machines such as Anton (Robustelli
et al., 2018) or require extensive computational resources. A num-
ber of enhanced sampling techniques have been developed (Gong
et al., 2021) to reduce the computational expense with conven-
tional computing resources.

Temperature-based methods. Elevating a system’s temperature
increases the likelihood of the system to sample minima that are
separated by large PES barriers (see Fig. 7). Replica exchange MD
simulations exploit this principle by simultaneously running multi-
ple replicas of the system at different target temperatures. During
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the simulations, states of neighboring replicas are exchanged at
constant intervals, with the exchange probability defined as:

p({x}i) ↔ ({x}j)

= min (1, exp [(
1

kBTi
− 1

kBTj
)(U({x}i)− U({x}j))]) (25)

where Ti and Tj are the target temperatures, at which the replicas i
and j are simulated. The number of replicas and the target temper-
atures are determined by the number of particles to set the exchange
probability to roughly p≈ 0.4 (Zhang et al., 2005). Temperature rep-
lica exchange MD has proven to be reliable in its many applications
to both folded proteins and IDPs (Wu et al., 2009; Wang et al.,
2020). Many variations of replica exchange techniques, such as
the Hamiltonian replica exchange MD (HREMD), replica exchange
with hybrid tempering (Appadurai et al., 2021), and Hamiltonian
scaling in replica exchange with solute tempering (REST) (Liu
et al., 2005) have been developed. For these variants, the main con-
cept is to simulate only a subset of atoms to be at different temper-
atures, thus focusing sampling on the subsystem of interest.
Applying these techniques can greatly shorten the simulation time
for IDP studies. A recent example of this technique used unbiased
all-atom molecular dynamics (AAMD) with HREMD to model

the c-Src kinase N-terminal IDR ensemble over a 1 μs timescale
(Shrestha et al., 2019).

Modified potential. In complement to using elevated tempera-
tures to cross PES barriers, reducing barrier heights by altering the
potential can facilitate sampling. Biased potentials can be applied
to user-defined collective variables (CVs) to enhance sampling.
Adding boost potentials that raise the energy minima of a PES
accelerates sampling by effectively lowering the energy barriers.
Metadynamics is one such method that has been widely used to
explore the conformational space of biomolecules and for deter-
mining free energy landscapes. In metadynamics, a biased poten-
tial with a Gaussian form is applied to a user-selected CV at
a constant interval τ, which results in the potential (Laio and
Parrinello, 2002):

V(�s, t) =
∑
nt

W(nt , t) exp −
∑d
i

(si − s(0)i (nt))
2

2s2
i

( )
(26)

where W(nτ) and σi are the height and width of a bias potential,
respectively. si is the targeted state of the CV and s(0)i (nt) is its
instantaneous value at time nτ. The advantage of metadynamics
is that the sum of the added bias potentials over the simulation
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Fig. 7. Computational methods commonly used to model IDR structural properties. The IDR propensity of a structure can be predicted from its amino acid
sequence by tens of established tools (Liu et al., 2019), and structural states of IDP can be either explicitly modeled (Ozenne et al., 2012) or characterized by
an implicit phase diagram (Holehouse et al., 2017). Polymer models including the simplistic freely jointed monomer model and advanced models that account
for intramonomer interactions can be used to characterize IDR ensembles (Milstein and Meiners, 2013; Schuler et al., 2016). Particle-based simulations are com-
monly used to predict IDR conformer structures and associated kinetics (Wang, 2021). All atom simulations consider every individual atom in the system to deter-
mine detailed descriptions of the potential energy surface (PES) but are computationally intensive, while coarse-grained simulations lump atoms together to
increase sampling efficiency at a modest loss of accuracy. Lastly, statistical models frequently use partition functions to obtain thermodynamic descriptions of
IDRs (Hadzi et al., 2021).
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time course approximate the free energy profile along the CV:

V(�s) = −G(�s) (27)

In practice, however, the values of W, τ, and σ need to be carefully
chosen for good performance.

The umbrella sampling method is a popular biased-sampling
technique that enhances the sampling at windows along a CV
by introducing a harmonic potential centered at each window’s
midpoint. The sampling of CVs along the windows is then used
to recover the unbiased potential of mean force (PMF). A prom-
inent challenge for the CV-based accelerating simulation tech-
nique is the choice of CVs. Choosing the appropriate CV that
can capture a protein’s biological-relevant degrees of freedom is
challenging (Chen, 2021). Bias-exchange metadynamics
(BE-MTD) alleviates this problem by performing metadynamics
simulations with different CVs to identify the optimal sampling
path (Piana and Laio, 2007). In BE-MTD, a metadynamics replica
is performed for each CV, and the exchange of conformations
from randomly paired replicas occurs at a constant time-interval
with a Metropolis acceptance criterion (Eq. (13)). Lastly,
machine learning techniques have also been trained to find opti-
mal CVs (Chen, 2021). For example, the autoencoder model,
which contains an encoder to map high-dimensional data ({x})
to low-dimensional data (�s, CV) and a decoder to reverse the pro-
cess, can be trained based on MD sampled configurations to iden-
tify an appropriate CV (Chen, 2021).

Biased potentials can also be applied to broader sets of coordi-
nates beyond CVs. Accelerated and Gaussian-accelerated MD are
two related methods that are similar to metadynamics, but require
no prior knowledge of CVs (Hamelberg et al., 2004; Miao et al.,
2015). For Gaussian accelerated MD, the boost potential is
applied system-wide to a protein’s total potential, or the dihedral
space (Miao et al., 2015), instead of user-selected CV, when the
system’s original potential is smaller than a threshold:

U(�r) = U0(�r)+ DU(�r), if U0(�r) ≤ Ethres (28)

For this approach, the standard deviation of the boost potential
sDU(�r) is recommended to be less than 10kBT to ensure accurate
reweighting for recovering the unbiased PES (Miao et al., 2015).

These categories of enhanced sampling techniques can be
combined to improve predictions of an IDR ensemble. For exam-
ple, in Li et al. (2022), replica-exchange and metadynamics were
combined to reveal ensemble properties of a 46 amino acid IDR
derived from the DEAD-box protein DHH1. By using the
advanced sampling techniques, the authors determined the free
energy landscape as a function of secondary structure content
and determined that the IDP has a low propensity for self-
aggregation (Li et al., 2022). Lastly, while most of these strategies
have been developed for explicit, AAMD simulations, in principle
they can be adapted to any number of molecular simulation
approaches.

Statistical mechanics models Statistical mechanics provides a
framework to relate probabilistic representations of molecules to clas-
sical thermodynamics terms like the free energy. This is generally
done by writing a partition function that enumerates the states avail-
able to a molecular system and their corresponding energies:

V(b) =
∑
xi

exp(−bH(x1, x2, . . .)), (29)

where H represents an appropriate Hamiltonian for the system of

interest. This partition function provides the appropriate normaliza-
tion to determine the probability of a given state:

P(xi) = exp [−bH(xi)]
V(b)

(30)

Standard thermodynamic relationships such as the free energy
can then be defined with respect to the partition function:

G = −kBT ln |V| (31)

As such, they are most frequently used for systems in
equilibrium.

Hadzi et al. proposed a statistical thermodynamics model to
describe the fuzzy ensemble of IDPs when bound to targets
(Hadzi et al., 2021). The core idea is that target-bound IDPs
adopt heterogeneous structural states similar to the isolated
state, but with higher fractions of α-helical content. Thus, in its
bound state, an IDP’s ensemble properties are governed by a
coil-to-helix transition propensity, and constraints on this transi-
tion imposed by interactions with the target. In that coil–helix
transition model, each residue in the polypeptide can adopt either
a coil state or helix state. Additionally, a subset of these residues
are ‘hot spots’ that interact with the target. This yields a partition
function of the form:

V =
∑h=1

2NH−1

Vb,h (32)

where Ωb,h is a partition function for a set of hotspots (h) and NH

is the total number of hotspots. Ωb,h in turn is based on a gener-
ating function that gives the statistical weight for a residue’s pro-
pensity to undergo a coil-to-helix transition and a change in
statistical weight based on its interaction energy, ΔGint, when
bound with the target. These interaction energies can be obtained
by MD simulations. This statistical model successfully predicted
the changes of IDP helical content and binding affinity in two
IDP–protein complexes driven by mutations in the IDPs, which
were validated by NMR, CD, and isothermal titration calorimetry
(ITC) binding assay data (Hadzi et al., 2021).

Solvation models. Solvation is an important factor to consider
when simulating an IDR ensemble, given that amino acid interac-
tions with an aqueous solvent are strongly thermodynamically
favorable for IDRs. The unstructured ensembles and dynamics
of IDRs are more sensitive to protein/water interactions, com-
pared to their folded counterparts (Wuttke et al., 2014). For
this reason, current solvent models pose difficulties in accurately
recapitulating experimentally determined IDR ensembles via sim-
ulation. This was recently illustrated in a study suggesting that the
recently developed ‘general-purpose’ optimal opint charge (OPC)
water model (Izadi et al., 2014) still yields predictions of IDP
ensembles that deviate from experiment, despite its improved per-
formance over standard transferable intermolecular potential with
3 points (TIP3P) models (Shabane et al., 2019). Efforts aiming to
improve all-atom and CG solvation models for IDRs can be cat-
egorized into those improving the water model parameters alone
or correcting the water/protein/ion interaction potentials. For
example, refitting of the point charges in the TIP3P water
model was reported to yield more accurately predicted IDP
ensembles when validated against SAXS profiles (de Souza
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et al., 2020). In addition, Gil Pineda et al. used a modified TIP3P
water model combined with the CHARMM36m protein force
field to correct a tendency for simulations to over-predict the
compactness of IDPs (Gil Pineda et al., 2020). Similarly, it was
found that increasing the Martini forcefield’s protein–solvent
interaction potential greatly improved the agreement between
sampled IDP ensembles with data from SAXS and NMR
(Thomasen et al., 2022). In tandem, optimization of metal ion
parameters for different water models has been pursued toward
reproducing experimentally determined hydration energies, coor-
dination numbers, and ion-coordinated water exchange phenom-
ena (Grotz and Schwierz, 2022). Lastly, there has been progress in
adding energy terms to account for temperature-dependent pro-
tein stabilities into existing implicit solvent models to improve
predictions for both IDP and globular proteins (Arsiccio et al.,
2022).

Multi-scale simulations. In contrast to ‘single-model’ approaches,
other studies of IDRs have combined methodologies to enrich the
diversity of sampling. As an example, a chain growth model has
been combined with all-atom simulations to explore an IDP’s
ensemble (Pietrek et al., 2020). Pietrek et al. used AAMD simula-
tions, with a local-to-global step-wise divide-and-conquer strategy
to achieve comprehensive ensemble sampling of the α-synuclein
IDP. This entailed first sampling the local fragments indepen-
dently, assembling the fragments with a ‘chain-growth Monte
Carlo’ strategy, and then simulating the intact IDP as a final
step (Pietrek et al., 2020). This process has been improved by
incorporating experimental chemical shift data into the fragment
assembly (Stelzl et al., 2022). Lastly, CG MD and AAMD can be
combined, as shown by Garcia et al., to demonstrate the confor-
mational space of a full-length IDP (Chvez-Garca et al., 2022).

Bridging computer models with experiments. Simulations in sec-
tion ‘Computational approaches’ are parameterized, validated,
and refined using the experimental techniques listed in section
‘Experimental techniques’. We now discuss how comparisons
between experimental data are made and how experimental data
are used to constrain searches.

A variety of strategies have been proposed for aligning model-
ing results with, and validation against, experimental data. In
principle, experimental data (such as FRET efficiency) and com-
putational data (such as residue–residue distance) should yield
similar distances between probed amino acids. However, in prac-
tice there may be limited overlap because of the intrinsically dif-
ferent spatiotemporal scales, at which these data are collected
(Best, 2017) and measurement uncertainties. However, there are
strategies that mitigate these comparisons, such as for co-aligning
with NMR (order parameters (Lipari et al., 1982)), SAXS (radius
of gyration (Henriques et al., 2015)), and fluorescence (pairwise
distance (Metskas and Rhoades, 2015)). One such example
includes a study that combined SAXS and NMR with the struc-
ture generation method Flexible-Meccano to characterize the
ensemble of an IDP from the Sendai virus (Bernadó et al.,
2005). In that study, the conformations of the IDP were iteratively
generated via the ‘Flexible-Meccano’ modeling method, and the
RDC and SAXS data predicted from these conformations were
then compared against experimental values until convergence
(Bernadó et al., 2005).

Similar approaches have been applied to the MAPIDs TnI,
MyBPC3, and myotilin. Metskas et al. studied the IDRs in TnI,
using MD simulations to probe the distances between multiple

positions of TnI relative to TnC. These distances were compared
against experimental FRET data (Metskas and Rhoades, 2015).
Since the FRET observable time resolution (∼1 ms) was orders
of magnitude longer than the protein’s conformational sampling
(ns to μs), the experimental observable was reflective of the pro-
tein’s average dynamics. Toward that end, the authors used
short MD replicas in parallel, starting from different initial struc-
tures to capture the protein’s conformational dynamics for direct
comparison against FRET efficiency (Metskas and Rhoades,
2015). Michie et al. (2016) used a similar strategy to identify a
linker in the M-domain of MyBPC3 for binding calmodulin via
SAXS scattering and computational modeling. Another excellent
MAPID study that utilized both experiment and simulation was
performed by Kostan et al. (2021). Conformations comprising
myotilin’s ensemble were selected from a pool of structures gen-
erated by the ‘EOM’ approach (Bernadó et al., 2007) to match
experimental SAXS profiles. These conformations, together with
biochemical binding assays, provide an integrative structural
model that rationalizes the mechanism, by which myotilin’s
IDR binds to F-actin (Kostan et al., 2021).

Other approaches have used Bayesian inference to relate
predicted structural models to experimental data. With this
framework, the conditional probability of simulating a protein
conformation yx, given an experimental observation, θRg, is deter-
mined from Bayes theorem. This observation, for instance, could
be a value of Rg implied from SAXS data. This probability, P( yx|
θRg), is known as the posterior distribution. The posterior is deter-
mined from the prior distribution, P( yx), and the likelihood, P
(θRg|yx). The prior distribution is the probability that the simu-
lated protein yields a conformation yx. The likelihood is the prob-
ability of making an experimental observation θRg, given the
simulated conformation yx. These relationships culminate in the
equalities:

P(yx|uRg) =
P(uRg|yx)P(yx)

P(uRg)
(33)

= P(uRg|yx)P(yx)�
y P(uRg|yx)P(yx)dy

(34)

The denominator in Eq. (33) represents the probability of
experimentally observing the value θRg, and can be estimated
from Eq. (34).

A study from Fisher et al. proposed a variation of this
approach to determine population weights (w(y)

��

) of simulated

protein structures that are consistent with a set of experimental
measurements (�u), using a posterior P(w(y)

��
|�u). The population
weights were set by the Boltzmann factor (Eq. (30)), usingenergies
calculated for all conformations. The prior P(�w) was based on
Gaussian distributions using transformed representations of the
weights. Importantly, the likelihood used the expected value of an
experimental observable like Rg from the weighted simulated struc-
tures, E(ui|�w), as well as the error in the predicted observable, eRg:

P(ui|�w) = 1�������
2peRg

√ exp − (ui − E(ui|�w))2
2eRg

[ ]
(35)

In practice, the authors generated an ensemble of protein con-
formations via MD simulations, after which their Bayesian frame-
work was used to determine the most likely conformation weights
that agreed with RDCs or chemical shifts from NMR (Fisher et al.,
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2010). Another variation of this approach defined an error func-
tion for SAXS data to penalize overfitting due to extraneous
degrees of freedom (Bowerman et al., 2019). An example applica-
tion to MAPIDs includes a study of MyBPC3, in which the Bayes
inference is used to align simulation results with SAXS and NMR
data. This strategy revealed that the flexible linker connecting the
M-domain and C2 domain allows the two domains to sample
diverse interdomain orientations, thus imparting considerable
flexibility to the construct (Potrzebowski et al., 2018).

Computational methods for predicting intramolecular
dynamics of MAPIDs

Problem and application
The kinetics with which conformations exchange with one
another are equally important relative to the breadth of conforma-
tions adopted by an IDP, e.g.

{x}1 O
k12

k21
{x}2

where {x}i refers to the conformation i. This information is critical
for understanding the timescale of MAPID functions relative to
other physiological phenomena.

As an example, the TnI switch peptide is disordered at resting
(diastolic) Ca2+ levels. Binding of this peptide to TnC’s hydropho-
bic patch promotes a disorder-to-order transition of the peptide
to form a folded α-helix in response to elevated cytosolic Ca2+

(Metskas and Rhoades, 2016). The timescale for this conforma-
tional search and fold process must occur within the brief rise
in calcium that accompanies a typical heartbeat. For instance,
the breadth of the TnI C-terminal IDR ensemble determines its
effective concentration for steady-state measurements (section
‘Implicit/semi-analytic representations’). However, it is the rate
at which the IDR samples the appropriate position and conforma-
tion to bind TnC, relative to the duration of elevated calcium,
that will determine the rate of activating the thin filament.
Similarly, the intrinsic timescales for myosin’s dynamic IDR

loops to interact with actin could impact the rate of cross-bridge
formation (Gurel et al., 2017; Doran et al., 2020). Altogether, the
dynamics of these IDRs and those of other MAPIDs collectively
influence the kinetics of force generation (Fig. 8).

Experimental techniques
NMR. Probes of IDR conformational dynamics can be resolved
via NMR experiments through analyzing spin relaxation data
(Ban et al., 2017). For instance, residue mobilities and interactions
can be obtained by fitting longitudinal (R1)/transverse (R2) relax-
ation rates and heteronuclear steady-state NOEs (Sibille and
Bernado, 2012). Such techniques provide high structural resolu-
tion, although timescales can be limited to μs-ms for R1/R2 relax-
ations and ps-ns for NOEs (Palmer, 2004). RDCs can also be used
to probe protein dynamics at atomic resolution in the ps to ms
ranges (Tolman and Ruan, 2006). As an example, N15 relaxation
provides ps to ns time resolution (Hwang et al., 2014), though
interconversion of IDP conformations may approach timescales
of μs or longer (Bernetti et al., 2017). Abyzov et al. also demon-
strated that temperature-dependent NMR can yield ‘local’ activa-
tion energies for dynamic modes of an IDR ensemble (Abyzov
et al., 2016). NMR relaxation techniques have also been used
with TnI. Hwang et al. as an example assessed the dynamics of
TnI’s N-terminus (residues M1–K37) and found that it remains
intrinsically disordered even after binding to TnC (Hwang
et al., 2014). In addition, relaxation rate constants and NOEs col-
lected for MyBPC3 indicated that the linker spanning its tri-helix
bundle and C2 domain exchanges conformations on a ps to us
timescale (Michie et al., 2016), that is much faster than the typical
heart beat.

Time-resolved X-ray and SAXS. Time-resolved X-ray crystallogra-
phy enables observations of how electron density maps of protein
domains evolve in time, which can provide functional insights
(Schotte et al., 2003). While applications to MAPIDs have not
yet been reported in the literature, the technique was used with
myoglobin to reveal a series of structural intermediates exchang-
ing on a 150 ps timescale during its functional cycle (Schotte
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Fig. 8. (a) Dynamics of an IDP ensemble represented by a Markov state model (MSM). (b) Experimental methods for structure determination and their temporal
resolutions. Timescale information of NMR, X-ray, cryo-EM, and SAXS are taken from Ban (2020). FRET time resolution spans ns to seconds (Okamoto and Sako,
2017). Size information: EM is appropriate for proteins >100 kD (Yeates et al., 2020). NMR is most suitable for <30 kD proteins (Xu et al., 2006). X-ray can solve struc-
tures up to 4000 kD (PDB website statistics). FRET is used for medium-sized proteins but has been reported for up to a 540 kD protein (Sielaff et al., 2022).
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et al., 2003). Time-resolved X-ray scattering was also applied to
resolve quaternary structure dynamics on a 316 ns to 100 μs
range for carboxyhemoglobin (Cho et al., 2021). In addition,
SAXS has been used to complement NMR studies. In this context,
SAXS can provide the general shape of an IDR ensemble, while
NMR is used to reveal structural dynamics at ps–ns, μs, and ms
timescales (Sibille and Bernado, 2012; Schneider et al., 2019).
For example, the combination of SAXS and NMR enabled both
conformational and dynamic characterization of IDRs in the ribo-
somal L12 protein (Sibille and Bernado, 2012), for which not only
the ensemble of structures, but also their conformational transi-
tion timescales are obtained.

Fluorescence techniques. Fluorescence-based techniques such as
time-resolved fluorescence anisotropy are powerful tools for
resolving protein motions occurring at different timescales.
Time-resolved fluorescence anisotropy is well-suited for monitor-
ing local backbone rotation and long-range correlation kinetics
(Das et al., 2021). One example from Grupi and Haas (2011)
introduced fluorescent labels at different positions of the
α-synuclein IDP. Time-resolved FRET was then used to deter-
mine the α-synuclein end-to-end distance distributions, which
revealed the disordered nature of the protein, as well as its
rapid intrachain diffusion dynamics (Grupi and Haas 2011).
Another example revealed TnT’s flexible linker conformations
on the full cardiac thin filament. The time-resolved FRET data
measured from labels in the IDR linker were then used as con-
straints to bias MD sampling of the TnT structure (Deranek
et al., 2022). Fluorescence correlation spectroscopy is another
technique that can be used to probe conformational changes
occurring over 20–300 ns (Lee et al., 2015), but applications to
myofilament proteins appear to be limited to determining protein
concentrations in vivo, such as by Duggal et al. (2017).

Computational approaches
Implicit, semi-analytical approaches. Examples of implicit, semi-
analytical methods for intramolecular IDP kinetics are fewer in
number relative to the structural models introduced in the previ-
ous section. One model of note gives the rate, k, of two ends of a
polymer to contact one another (Grupi and Haas, 2011):

1
k
= R2

3D

��
p

√
2a

+ ln 2− 1−
��
p

√
2

a+ 4
3
a2

( )
(36)

where D is the intramolecular end-to-end diffusion coefficient,
R =

�����
〈r2〉

√
is the root mean square distance between the interact-

ing residues, a is the radius of the residue, α = (3/2)0.5(a/R), and
D is the intramolecular diffusion coefficient. Similarly, there
have been efforts to determine the kinetics of forming interior
loops in polypeptide chains. For instance, loop closure kinetics
for a WLC can be estimated if the PMFs are known in advance
(Hyeon and Thirumalai, 2006).

Explicit simulations of intramolecular IDR kinetics. Explicit
models of IDP kinetics are common. Early approaches relied on
explicit definitions of reaction coordinates (RCs), which are coor-
dinates that describe the progress of a system exchanging between
two states, such as dynamic changes in end-to-end distances
(Doucet et al., 2007). Relating these dynamic changes to kinetics
has been done using approaches based on the Smoluchowski
equation (Hamelberg et al., 2005) to estimate dynamics along a

one-dimensional PMF (Szabo et al., 1980; Hamelberg et al., 2005):

∂p(x, t)
∂t

= ∂

∂x
D(x)exp−bU(x) ∂

∂x
(expbU(x)p)

[ ]
(37)

where p(x, t) is the time-dependent probability density along the
RC, D is the diffusion coefficient, and U(x) is the PMF. Other
approaches include using Kramer’s rule (Berezhkovskii and
Szabo, 2005) to calculate the transition rate (Berezhkovskii and
Szabo, 2005):

k =
∫xb+Dx

xb−Dx
exp−bU(x)dx

( ) ∫xT+Dx

xT−Dx

expbU(x)

D(x)
dx

( )[ ]−1

(38)

where x is the RC, while xb and xT represent the initial state and
transition state, respectively. Hyeon et al. also used Kramer’s rule
to predict passage times over potentials of mean force based on
the equilibrium distributions of the chains (Hyeon and
Thirumalai, 2006).

These approaches rely on estimates of D(s), which can be
determined via time-resolved FRET (Grupi and Haas, 2011), or
by using methods we discuss below. In many cases, a single (spa-
tially uniform) diffusion coefficient suffices. This can be obtained
via experiment or simulation by estimating a particle’s mean
square displacements, ⟨x2⟩, which are related to the diffusion
coefficient in one dimension:

lim
t
1〈(x(t)− x(0))2〉 = 2Dt (39)

⇒ 〈x2〉 = 2Dt (40)

The degree of disorder in an IDR can also be used to refine this
constant (Chu and Wang, 2019). Other situations, especially
those that use D(x) in parallel with potentials of mean force, ben-
efit from estimates that are spatially dependent. In these
cases, autocorrelation functions of a solute’s positions or velocities
from explicit simulations can be helpful to obtain spatially
resolved diffusion coefficients (Hummer, 2005) along a PMF
and its barriers. Here one can rely on the principle that the auto-
correlation function for Markovian processes decays exponentially
over time with a correlation time τc:

〈x(0)x(t)〉 = 〈x2〉 exp (−t/tc) (41)

tc = 1
〈x2〉

∫1
0
〈x(0)x(t)〉dt (42)

The correlation time is related to the particle’s friction coeffi-
cient, ζ, and mass via τc =m/ζ. The Einstein relation D = kBT/ζ
then yields the diffusion coefficient from ζ. A derivation using
harmonic forces to constrain the system along the PMF is pro-
vided in the appendix of Pace et al. (2021).

A key concern with such approaches is that force fields are
generally optimized for equilibrium structures, not their dynam-
ics, therefore the kinetic barriers to conformational motions
may be poorly described (Ponder and Case, 2003). In addition,
states with large energy barriers are much less frequently sampled
or even inaccessible for conventional MD simulations, which
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could pose difficulties in identifying the most probable RCs. In
general, RCs can be difficult to define or may consist of many par-
allel pathways (Hinczewski et al., 2010).

To partially address these limitations, enhanced sampling tech-
niques have been used to sample regions that are separated by
large energy barriers. For instance, accelerated MD simulations
were reweighted and used Kramer’s rule (Eq. (38)) to estimate
the unbiased kinetics of intramolecular transitions between con-
formations (Hamelberg et al., 2005). More recently, in Bernetti
et al. (2017) metadynamics was used to reveal the PES of an
IDP. Using a post-processing analysis called ‘Bin-Based Kinetic
Model’, rate constants were recovered from the biased metady-
namics trajectories.

Markov techniques A shortcoming of the preceding
approaches is that an RC is needed to be defined a priori.
Markov state modeling techniques (such as MSMBUILDER

(Harrigan et al., 2017) and PYEMMA (Scherer et al., 2015)) bridge
this gap by allowing the RCs to be directly determined from the
MD simulation data. In brief, long simulations are performed to
yield trajectories that span the conformational space of the pro-
tein. Then, the conformation ensembles from these simulations
are discretized into microstates, based on a user-defined metric
like RMSD (Prinz et al., 2011; Husic and Pande, 2018), from
which rate constants for exchanging between microstates are
determined. This approach is based on the idea that the time-
dependent change in the probability of a given state can be
described as a rate of transition out of (or into) the state:

dpj
dt

= −pj
∑
i=j

k ji +
∑
i=j

kijpi (43)

or more generally, for multiple states:

dp(t)
dt

= K(dt)p(t) (44)

The relationship:

p(t) = exp (Kt)p0 (45)

can then be used to determine the state probabilities at time t.
If K from Eq. (44) is not known, which is generally the case for

Markov state model (MSM) approaches, the change in probabili-
ties can be expressed in terms of a transition probability matrix, T .
This matrix evolves the state probabilities by some δt:

p(t + dt) = T(dt)p(t) (46)

The transition matrix is populated by counting the transition
events from microstate i to j occurring within δt (the lag time),
as calculated from the discretized trajectory. If the model is
Markovian for n consecutive lag time periods, the following holds:

p(t + ndt) = Tn(dt)p(t); (47)

that is, as n→∞, the steady-state distribution (p0) is obtained.
For systems that behave as Markovian processes (namely the tran-
sition probability is only dependent on the current state and is
independent of previous states), the implied timescale of the m

th eigenvalue, tm becomes independent of the lag time δt:

tm = − dt
ln lm

(48)

where λm is the m th eigenvalue of the transition probability
matrix T . In practice, this implied timescale tm is used to validate
that the model built from simulations is Markovian. Transition
matrices from this approach can then be used to find K by recog-
nizing that (Polizzi et al., 2016):

K = lim
dt
0

T − I
dt

( )
(49)

Once the transition matrix is determined, useful quantities
such as the mean first passage time (MFPT), ⟨tfp⟩s can be
estimated. The MFPT represents the average time for a system
to transition into an absorbing state, s. A germane example of
an MFPT would be to estimate the folding rate of a protein,
where the sth state is the folded end-point and all other states
are unfolded intermediates (Dai et al., 2015). This quantity can
be determined by:

〈t fp〉s =
∑
i=s

ri (50)

where ri is the residence time of state i. The residence times for all
states can be determined from the rate matrix K , following the
derivation from Polizzi et al. (2016). In their approach, a rate
matrix, K̃ , is defined that includes an absorbing condition for
state s (e.g. ksi = 0 ∀i = s). This allows the residence times in
each state to be determined by:

r =
∫1
0
exp(K̃t)p̃0dt (51)

⇒ ri = [−K̃
−1
p̃0]i (52)

where p̃0 is the probability distribution with ps = 0.
The thermodynamics and transition kinetics between the

metastable states can then be readily obtained from the MSM
model (Qiao et al., 2013). The computational complexity of
these simulations is daunting as increasingly larger numbers of
states are considered; in general, dimension reduction techniques
(e.g. time-lagged independent component analysis
(Pérez-Hernández et al., 2013)) and state grouping methods
(e.g. k-means clustering) are needed to achieve low-dimensional
data and a manageable number of states (Scherer et al., 2015).

Brownian dynamics (BD) Brownian dynamics that describe
molecular motions of systems with user-interested potentials
could provide unique insights into IDP dynamics. When com-
pared to polymer models like the WLC formalism, BD can not
only provide ensemble properties like compactness, but also
kinetic information such as contact rates, as done by Mühle
et al. (2019). In their study, the dynamics of IDPs with different
chain lengths were simulated with a minimal BD model, in which
IDPs are treated as beads connected by fixed bonds. The authors
showed that hydrodynamic interactions and excluded volume
effects were key factors that governed the IDP’s dynamics, by
comparing experimental measurements of end-to-end contacts
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obtained from fluorescence correlation data (Mühle et al., 2019).
The dynamic properties of higher-order structures, such as those
formed by the co-assembly of the conformations of intrinsically
disordered Phe-Gly repeats, can also be probed by BD
(Moussavi-Baygi and Mofrad, 2016). The fast recovery of high-
order structures bestows IDPs with a tolerance to perturbations
that may protect their function (Moussavi-Baygi and Mofrad,
2016).

Multi-scale approaches. Multiscale methods can also be used to
estimate kinetics. One such example relies on both state discreti-
zation (like MSM) and diffusion along a PES (like the
Smoluchowski model). This combination was used to reveal the
intramolecular rate constants for an IDP of the Sendai virus
nucleoprotein (Bernetti et al., 2017). In that study, the PES of
the IDP was first obtained by metadynamics simulations. The
PES was then used to guide the state discretization to achieve a
tractable number of states (Bernetti et al., 2017). The transition
rate between two metastable states a to b was then given by:

kij = k0ij exp
Gi − Gj

2kBT

( )
(53)

where Gi−Gj is the free energy difference between two minima and
k0ij is the transition rate on a flat PES. Here, k0 is a function of a dif-
fusion coefficient D and the barrier height (Eq. (37)). Multiple MD
replica simulations were then performed to sample transition events
between discretized states to estimate the transition probability
matrix (see Eq. (48)). Lastly, kinetic MC simulations based on the
transition probability matrix and trial values of D as inputs were
performed. The kinetic MC model parameterization that recovered
the observed state from the MD replicas was used for determining
the appropriate D (Bernetti et al., 2017). Combinations of the com-
putational techniques discussed in this section that have been
applied to MAPIDs are summarized in Table 1.

Computational methods for predicting the MAPID co-assembly

Problem and application
Building on the previous sections where the structure or dynamics
of isolated MAPIDs are considered, in this section we seek to sim-
ulate how intrinsic disorder determines the structures of associ-
ated proteins and their rates of binding. This is important for
probing how protein structures switch between unfolded and
folded conformations that are spontaneous (conformational selec-
tion) or induced during binding (induced-fit) (Sugase et al.,
2007). Similarly, we can learn how proteins that host many
SLIMs within a dynamic sequence can utilize fast on/off binding
rates to facilitate high-affinity interactions (Hough et al., 2015).
These introduce two main challenges: (1) How to computation-
ally calculate the transition kinetics between biologically relevant
states of an IDP and (2) How to relate these kinetics to IDP
functions.

IDPs structures and their association kinetics are particularly
relevant to myofilament contraction and its dynamic regulation.
The binding of TnI’s C-terminal domain with Ca2+-saturated
TnC is a classical example, whereby the disordered TnI switch
peptide undergoes an unfolded to folded transition when
bound. Simulating these interactions still needs theoretical devel-
opments that can more accurately capture the structures and
dynamics of these interactions (Schuler et al., 2020).

Experimental techniques
Binding assays. Binding assays are frequently used to assess the
association of IDRs with other protein targets. Electrophoresis
(see section ‘Experimental techniques’) is routinely used to deter-
mine the extent, to which two proteins form a complex, based on
differences in the migration of the complex versus the isolated
components. This assay for instance was used to assess the bind-
ing of tropomyosin to tropomodulin (Greenfield et al., 2005;
Kostyukova et al., 2007).

F-actin co-sedimentation is another established method to
investigate the direct interaction of proteins with the actin fila-
ment (Srivastava and Barber, 2008). Co-sedimentation consists
of two steps: (1) incubation of purified proteins with actin, (2)
centrifugation to pellet actin and analysis of the proteins that
co-sediment with actin (Srivastava and Barber, 2008).
Co-sedimentation was also used to reveal that PEVK motifs in
titin bind to actin in a Ca2+-dependent manner (Linke et al.,
2002).

Isothermal titration calorimetry (ITC) is a very accurate and
commonly used technique capable of measuring the energetics
of biomolecules binding over a wide range of affinities (10−3 to
10−12 M−1) (Velázquez-Campoy et al., 2004). This method
works by incrementally titrating in a reagent in excess of its bind-
ing partner. The heat released from the association event is
exchanged with a bath and measured. Analyzing the ITC curves
allows the dissociation constant, stoichiometry, enthalpy, and
entropy to be determined simultaneously (Velázquez-Campoy
et al., 2004). ITC was used to determine the binding affinity of
ankyrin’s auto-inhibitory IDR (Chen et al., 2017). These tech-
niques unfortunately do not provide structural and kinetic infor-
mation about the IDP binding process.

Fluorescence spectroscopy. The fluorescence techniques intro-
duced in section ‘Experimental techniques’ lend themselves to
probing the binding between IDRs and their targets (Lee et al.,
2015). As one example, time-resolved FRET has been used in
tandem with MD simulations to identify functionally important
conformations of TnT’s IDR linker when bound to the thin
filament (Deranek et al., 2022). Another example monitored dif-
ferences in intrinsic fluorescence as a probe for conformational
changes during TnT/TnC binding; this study also revealed that
a DCM-associated mutation in TnC enhanced their binding
(Johnston et al., 2019). Intrinsic fluorescence has also been used
to probe the interaction between titin’s PEVK motifs and actin
in the presence of S100A1 and Ca2+ (Yamasaki et al., 2001).
The kinetics of assembly are additionally amenable to
stopped-flow studies that monitor changes in intrinsic fluores-
cence following the rapid mixing of two species (Zheng et al.,
2015). The time-dependent changes in intrinsic fluorescence
can then be fit to rate laws to determine association kinetics
(Zheng et al., 2015). Lastly, in recent years, ‘BRET’ techniques
that utilize bioluminescence, such as from a luciferase protein
donor, to facilitate FRET between a donor/acceptor pair have
gained momentum toward characterizing PPIs in vivo
(De et al., 2013).

NMR. NMR techniques are also heavily utilized for monitoring
the kinetics and structures of IDR/protein association. Among
these, chemical shifts are the most frequently used to
monitor the assembly of MAPID structures. As an example, the
binding of tropomodulin’s N-terminal IDR to tropomyosin was
studied by collecting 15N-1H HSQC spectra (Greenfield et al.,
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2005). The IDR residues exhibit altered chemical shifts upon
addition of tropomyosin, therefore allowing the determination
of binding sites within the protein’s IDR (Greenfield et al.,
2005). Similarly, Hwang et al. utilized multidimensional solution
NMR spectroscopy to measure complex formation between a TnI
fragment (residues M1–G73) and intact TnC. This study indicates
that the TnI fragment gains helical content after binding to the
C-domain of TnC (Hwang et al., 2014).

Other techniques
Other techniques can provide data for probing putative interac-
tion sites between binding species. Mass spectrometry (MS) as
an example is an increasingly used technique to determine the
binding of IDR-containing species and, in some cases, the
amino acids forming the protein/protein interface. Cross-linking
mass spectrometry is a popular approach for the latter by identi-
fying adjacent amino acids bridging PPI interfaces (Merkley et al.,
2013). Specifically, characterizing chemically cross-linked peptide
fragments by mass spectrometry provides residue–residue interac-
tion information. This method has been applied to TnT’s
C-terminal IDR binding to TnC, where the direct binding of res-
idues N281–K286 from TnT to TnC residues M1–K6 was deter-
mined (Johnston et al., 2019).

Another MS-based technique, HDXMS, is frequently used to
probe protein complexes. With HDXMS, protons on buried
amino acids undergo less frequent deuterium exchange compared
to solvent-exposed sites. Differences in deuterium exchange in
isolated proteins relative to the complex provide a topological
map of amino acids forming the PPI interface as they are isolated
from the deuterated solvent. This approach has been used to
determine the binding sites of titin’s N2A isoform to the ankyrin
repeat protein (Zhou et al., 2021a). In that study, the authors
showed that the N2A segment, together with its C-terminal
IDR linker and the Ig-like domain connected by this linker, con-
stitute the binding site for the ankyrin repeat.

CD is another frequently used technique to monitor the asso-
ciation of two species if the isolated and bound states for the pro-
teins exhibit significant changes in secondary structure content.
Such applications have been used to probe structural changes fol-
lowing the binding of tropomyosin and tropomodulin (Greenfield
et al., 2005; Kostyukova et al., 2007; Uversky et al., 2011).

Computational approaches
Bioinformatics approaches. Beyond IDRs ensemble properties,
their functions, and especially the binding propensities, are
encoded in their sequences (Meng et al., 2017). Empirical obser-
vations indicate that regions within IDRs that are predicted to be
more ordered can often fold when bound to targets (Oldfield
et al., 2005). Correspondingly, IDPs are reported to be enriched
in molecule recognition elements (MoREs) that serve as target
recognition elements and undergo disorder-to-order transitions
upon binding (Yang et al., 2019). SLIMs are equally important
in mediating PPIs and are often disordered as well (Davey
et al., 2012). The availability of large, annotated IDP datasets
and the rapid development of machine learning techniques have
resulted in tens of bioinformatic tools for predicting IDPs’ bind-
ing sites and propensities for other proteins and nucleic acids
(reviewed in Meng et al., 2017). A recent study demonstrated
that MoREs and SLIMs in IDPs are amenable to language-
processing techniques and are therefore expected to be more read-
ily detected from IDP amino acid sequences (Lindorff-Larsen and
Kragelund, 2021). In addition to reasonably accurate predictive

models (Meng et al., 2017), the rapid and new developments in
this area will provide powerful tools to investigate MAPIDs’ func-
tions .

Implicit and semi-analytic representations. A number of implicit
models have been developed for predicting binding affinities
and rates for IDRs. Fundamentally, binding affinities can be
defined by the relationship:

KD = pD
pA

(54)

= |V|−1 exp (−UD/kBT)

|V|−1 exp (−UA/kBT)
(55)

⇒ KD = exp [−(UD − UA)/kBT] (56)

where UD and UA are the free energy of bound and isolated states,
respectively. A more rigorous example of note intuitively
describes binding affinity in terms of an effective concentration,
similar to that introduced in Eq. (10) (Van Valen et al., 2009).
This model assumes a protein contains two domains linked by
an IDR, for which each domain binds to a distinct site on a target
(see Fig. 9). If the affinities are KD1 and KD2, the combined affinity
can be estimated as:

KD = KD1KD2

ceff
(57)

where ceff is an effective concentration (Zhou, 2001). For this
example, the effective concentration can be determined by an
end-to-end probability density, p(d), such that ceff = p(d). We
used this concept of effective concentration to characterize TnI/
TnC interactions (Siddiqui et al., 2016). Although we did not
investigate PTMs in that study, in principle one could use this
model to investigate the effects of S23/S24 phosphorylation of
TnI on TnC’s Ca2+ KD, which are known to reduce troponin’s
apparent Ca2+ affinity (Rao et al., 2014).

Avidity is another term often used to describe the fuzzy binding
interactions between IDPs and their protein partners. IDPs are
well-known to bind to proteins through multi-valent interactions
through their many linear sequence motifs (MoRE/SLIM) (Davey
et al., 2012; Harmon et al., 2017; Yang et al., 2019). In this regard,
there likely exist many binding intermediates with variable stoichi-
ometries. The concept of avidity is proposed to describe the effec-
tive binding constant for multivalent interactions between two
molecules, and can be quantified by Erlendsson and Teilum (2021):

Kav =
∑

i [RLi]
[Rfree][L]

(58)

where [Rfree] and [L] are the concentrations of free state receptor
(folded proteins) and ligand (IDPs), respectively. [RLi] is the con-
centration of an intermediate complex with i ligands bound. This
equation illustrates that the binding constant increases with the
number of bound ligands or motifs.
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For the kinetics of binding we introduce the mass action
relationship:

A+ B O
k+

k-
A · B (59)

where k+ represents the association rate constant of species B with
target A, while the complex dissociation rate constant is given by
k−. They are related to the equilibrium constant KD:

KD = k−
k+

(60)

In the event that A and B are freely diffusing, spherical, and
uniformly reactive, the association rate can be described by the

Smoluchowski equation:

k+ = 4pDR (61)

where D is the diffusion constant and R is the distance between
the substrates’ centers of mass. This relationship arises from the
diffusion equation:

dr(t)
dt

= −∇ · j(t) (62)

j = −D∇r (63)

where the latter equation describes the substrate flux across an
arbitrary boundary, such as near the PPI interface. An area
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Fig. 9. (a) Binding of IDP to its partner often goes through a coupled-folding-and-binding process (Sugase et al., 2007), in which both the intramolecular conversion
kinetics (section ‘Computational methods for predicting intramolecular dynamics of MAPIDs’) of the IDP and its intermolecular association kinetics (section
‘Computational methods for predicting the MAPID co-assembly’) are important. (b) Theoretical frameworks for describing IDP intermolecular kinetics. The
Smoluchowski equation is an approximation for a diffusion-limited association rate (Kim et al., 2018). The Van Valen et al. model (Van Valen et al., 2009) (biochem-
istry on a leash) combines IDP-enhanced effective concentrations and competitive binding to describe IDP/target binding (Eqs. (10) and (56)). The fly-casting model
(Shoemakeret al., 2000) explains the kinetic advantage of IDP/target assembly through its fast searching for binding partners. The Brownian dynamics (BROWNDYE

(Huber and McCammon, 2010)) and the SEEKR (Votapka et al., 2017) programs both use the Northrup Allison McCammon algorithm (Northrup et al., 1984) provide
simulation-based estimates of association kinetics and thermodynamics quantities.
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integral of the substrate flux over the reaction boundary, Γa, yields
the association rate

k+ = 1
r0

∫
Ga

j · n̂ dG (64)

where ρ0 is the substrate concentration far from the molecular
complex and n̂ is a surface normal along Γa (Kekenes-Huskey
et al., 2012). For a spherical binding partner, the form:

k+ = 4pD
∫1
R0

R−2dR

[ ]−1

(65)

is commonly used, where R0 is the radius of a uniformly reactive,
spherical protein target (Shoemaker et al., 2000). Evaluation of
the integral yields Eq. (61).

To account for a PMF between the binding proteins, u, the
Smoluchowsi equation (Eq. (37)) yields a flux

j = D(∇r+ br∇u) (66)

that could be used with Eq. (64). If the reactive center and the
PMF are centrosymmetric, Eq. (65) becomes

k+ = 4pD
∫1
R0

R−2 exp [bu(R)]dR

[ ]−1|
(67)

(Shoemaker et al., 2000). These Smoluchowski relationships have
been used for several studies of IDP association (Dogan et al.,
2015; Kim et al., 2018; Ozmaian and Makarov, 2019).

To reflect a tethered substrate such as the N-terminal IDR
from TnI, arguments similar to those for Eq. (57) may be
assumed. Hence, the effective binding rate, k+,eff, of a species A
to B to form the complex C can be described via the scheme

A+ B O
k+

k-
A · B O

ka

kd
C (68)

for which the first equilibrium represents the diffusional encoun-
ter of the proteins from large distances, while the second equilib-
rium describes the intrinsic rates for forming C from the
‘encounter’ complex A ⋅ B. The effective binding rate constant
can then be evaluated as (Van Valen et al., 2009)

k+,eff = k+,1k∗a
k−,1 + k∗d

(69)

k∗a = kap(R) (70)

The latter equation represents the impact of the linker region on
the basal association rate of the ‘untethered’ binding domain.
Here, p(R), can be interpreted as an effective concentration,
such as the expression introduced earlier in Eq. (10) (Van
Valen et al., 2009). k+,1 and k−,1 represent the diffusion-influenced
association rate constants from the first equilibrium in Eq. (68),
while ka and kd reflect the intrinsic association and dissociation
rate constants.

An additional approach characterizes IDR association by a fly-
casting mechanism, via which an unfolded domain can accelerate
binding to a target (Shoemaker et al., 2000). It relies on comput-
ing the flux, ja, for a molecule in unfolded, u, and folded, f, states

to yield a combined association rate:

k+ = juMu + jf Mf (71)

where Ma represents the fraction of species in state a and ja fol-
lows from Eq. (66). With this model, the authors demonstrated
that binding kinetics can be accelerated by casting unfolded seg-
ments toward the target that bind with weak affinity, after
which the protein can reel itself toward the target by the simulta-
neous binding and folding of the segments.

Explicit representations. The kinetics of binding an intrinsically
disordered species to a target presents a difficult modeling chal-
lenge. This is because of the range of spatio-temporal scales nec-
essary to describe the event. In principle, one can simulate the
assembly of two binding species explicitly using unbiased molec-
ular dynamic simulations. Recently, this was demonstrated for the
binding of the measles virus nucleoprotein IDP to the X domain
of the measles virus phosphoprotein using specialized computing
resource Anton for hundreds of μs-length simulations (Robustelli
et al., 2020). In this capacity, the association kinetics, given suffi-
cient binding events are observed from the unbiased simulations,
can be simply estimated by collecting the number of events per
unit time in a fixed volume, such as via k+ = 1/tfp where tfp is
the first passage time of reaching the bound state (Sun and
Kekenes-Huskey, 2021).

The survival probability provides another means for comput-
ing the association rate. This can be done by simulating an ensem-
ble of substrates within a closed volume that can collide with a
target (Kim and Yethiraj, 2010). This is given by the reaction:

dSR
dt

(t) = −k(t)CLSR(t) (72)

where S(t) is the survival probability, e.g. the likelihood that the
target remains unbound from 0 to time t. The probability of
the target remaining unbound is enumerated from many simula-
tion trajectories as a function of time. The k+ at t→∞ is deter-
mined by fitting the expression and extrapolating to large t:

d ln (SR)
dt

= −k(t)CL (73)

Hence, the rate can be determined from the survival probabil-
ity for an element of the disordered domain, such as a SLIM, to
remain affixed to a binding site. To our knowledge, such
approaches have not been applied to IDRs, or at least not for
MAPIDs. This approach generally requires a large number of sim-
ulations to obtain convergent results.

Alternatives to explicit, brute force simulations can provide
more efficient means for extracting binding kinetics. Biased
all-atom MD simulations are a more scalable method to estimat-
ing binding kinetics, by favoring trajectories most likely to lead to
reaction. As an example, weighted ensemble all-atom simulations
were used to obtain a sufficient number of association events
between the p53 IDP to its partner, for which the association
rates were directly calculated based on a two-state model, e.g.
Eq. (59) (Zwier et al., 2016).

A related approach places substrates on a reaction boundary
(such as the b sphere in BD simulations shown in Fig. 9) and eval-
uates the flux of substrate toward the reactive center based on
explicitly simulating binding trajectories. This allows k+ to be
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determined by (Vijaykumar et al., 2016):

k+ = ka,0peq(R)kD
ka,0peq(R)+ kD

(74)

= [1− Srad(t 
 1|R)]kD (75)

Here kD is used to represent the diffusion-limited association
rate between binding partners, ka,0 is an intrinsic association
rate, and peq is the equilibrium distribution of the substrate.
They also show that this association rate can be determined
from Srad, which is the survival probability that reflects the likeli-
hood that two partners in contact (radially) diffuse toward the
bulk instead of binding. Hence, Eq. (75) describes the process
of two partners encountering one another at the diffusion-limited
association rate, then binding, before dissociation can occur.

The authors also show that k− can be determined by the flux of
substrate away from the binding center (Vijaykumar et al., 2016)

k− = kd,0Srad(t 
 1|R) (76)

= fB,0

HB
P(rn|r0) (77)

Here, kd,0 is an intrinsic dissociation rate, ϕB,0 quantifies the
flux of substrate reaching a binding interface, HB is an indicator
if the substrate were recently bound (Vijaykumar et al., 2016),
and P(rn|r0) is the probability that the substrate escapes before
being rebound. Formulations that use a biasing force to drive reac-
tions are also proposed, which could additionally enable one to
predict dissociation rates from MD simulations (Maximova
et al., 2021).

Markov state modeling.MSMs also provide a convenient frame-
work to model the kinetics of assembly, when the RC can be par-
titioned into a series of states. To relate these kinetics to an
association or dissociation rate, the transition probability matrix
can be used to compute quantities such as the MFPT or survival
probability. When si and sj represent the bound and dissociated
states, the MFPT (⟨t⟩j) for releasing a bound ligand can be
determined, if sj is enforced to be an absorbing state. This residence
time is inversely proportional to the off-rate, e.g. k− = 1/⟨t⟩j.
SEEKR is one such approach (Votapka et al., 2017, 2022) that
has used this formalism to determine an association rate of 9 ×
108 M−1s−1 for Ca2+ binding to TnC (Votapka and Amaro, 2015).

Brownian dynamics. BD offers a helpful compromise in mod-
eling IDP/protein association by representing solvent effects
through a friction coefficient that acts on the solute (see Eq.
(23)). Estimating the association rate from this formalism entails
enumerating the number of successful collisions between two spe-
cies versus those that result in the two species diffusing apart.
While many approaches are available for estimating this rate,
we refer to the frequently used Northrup Allison McCammon
algorithm (Northrup et al., 1984) (see Fig. 9).

k+ = k+,1p (78)

where b is the sphere radius at which the interactions between the
reactants become centrosymmetric, k+,1 is the rate constant of
arriving at b, and p is the probability that the reactants bind,
instead of dissociating. To calculate p, the term β∞ is defined to
represent the probability of two reactants reaching b and having
a single collision. This leads to two consequences: (1) bind/react

with probability α, or (2) escape. For the escaped reactant, there
is a probability Δ∞ to re-collide (encounter the b sphere once
again). This process is repeated to obtain p by (Northrup et al.,
1984):

p = b1a+ b1(1− a)D1a+ b1(1− a)2D2
1a+ . . .

= b1a
1− (1− a)D1

(79)

where α is the probability for the reactants to bind/react after one
collision. Details of this derivation are provided in section S2. This
approximation is used in the BD code BROWNDYE (Huber and
McCammon, 2010). We leveraged this relationship to perform
association calculations between an IDR of CN with CaM to dem-
onstrate that increased electrostatic screening due to ionic species
(see Eq. (9)) slows the diffusion rate (Sun et al., 2018).

BD has also been used to show how an IDR accelerates the
binding of EtsΔ 138 protein to ERK2 protein (Misiura and
Kolomeisky, 2020). Specifically, the EtsΔ138 has two binding
sites for ERK2, one in its folded domain, and another in an
IDR domain tethered to the folded domain. BD simulation
showed that binding the IDR site accelerates the overall associa-
tion rate. Increasing the IDR length amplifies the acceleration
effect up to ∼4-fold (Misiura and Kolomeisky, 2020).

Multi-scale approaches
AAMD and CG techniques have also been widely applied to study
IDP binding processes (Liu et al., 2017; Chu et al., 2020; Sun and
Kekenes-Huskey, 2021). For instance, in Wang et al. (2013),
AAMD was used to reveal the free energy landscape of a
20-residue IDR from measles virus nucleoprotein and its binding
mechanism with a protein partner. To accelerate the simulation of
the binding process, a structure-based potential was used to aug-
ment the conventional all-atom AMBER FF99SB-ILDN potentials
to bias the sampling toward the complex state (Wang et al., 2013).
These atomic simulations show that binding occurs through a
coupled-folding-and-binding process that consists of an initial
complex formation via a conformational selection mechanism
and a subsequent downhill induced fitting step (Wang et al.,
2013). Using a biasing principle, the structure-based model
(SBM) is a CG technique that drives binding to restore interpro-
tein contacts present in the native complex. In Chu et al. (2020),
SBM CG simulations were used to reveal the role of non-native
electrostatics in an IDP/receptor encounter complex. Liu et al.
(2017) used a double-bell-potential SBM to reveal that skeletal
muscle myosin light chain kinase and CaM bind through a pro-
cess utilizing both induced fit and conformational selection
mechanisms.

When two binding species are well-separated, details of solute–
solvent interactions are less important. Electrostatic interactions,
however, remain important and influence different stages of an
IDR’s binding process. Sun et al. (2018) utilized BD for well-
separated species and AAMD when proteins were loosely
bound. This approach revealed that electrostatics both drive
pCaN toward CaM and determine the conformation exchange
kinetics of the isolated IDR ensemble. Another example is from
Chu et al. (2012) in which SBM coupled with Debye–Huckel the-
ory was used to evaluate the role of electrostatics in IDP binding.
Their simulations demonstrated that electrostatic interactions ini-
tially accelerate binding, after which they hinder transitions to the
native complex. In these simulations, as the diffusing ensemble of
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IDR conformations approaches the target, the binding process
entails significant refolding to form the final complex.
Estimating the kinetics of refolding likely requires atomistic
representations.

In the event that two species fold via a conformation selection
mechanism, it is possible to estimate the association rate by com-
bining the ‘loose encounter’ association rate with the kinetics of
exposing the (IDR) active site, such as a SLIM. Here it is assumed
that the IDR has two states, the active state that is capable of bind-
ing the partner, and the inactive state in which the binding site is
concealed. The rate constants kf and kb reflect the gating kinetics
between these two states. The effective association rate for this sit-
uation can be estimated via a gating model developed by Szabo
et al. (1982):

k+eff =
k+keqkbZ[kf + kb]

kf (keq + k+Z[kf + kb])+ kbZ[kf + kb](k++keq)
(80)

with

Z[kf + kb] = 1+ ((kf + kb)R
2/D)1/2 (81)

where k+ is the association rate when the ligand (IDR) is locked
into the active state. keq is a characteristic constant indicating
the extent to which the association is diffusion-controlled (see
Szabo et al. (1982) for more details). In Sun et al. (2018), we
showed using MSMs that the gating of a phosphatase IDR was
rapid, which minimized the effect of conformational gating on
the association rate. In this way, dynamic ensembles can achieve
association kinetics that rival folded proteins.

Current limitations and future outlook

Limitations
Force field accuracy. The numerous IDR modeling approaches
described in our review invite an extensive list of limitations
and directions for improvement that would benefit MAPID char-
acterization. However, we focus our discussions on
atomistic-resolution simulations, which we believe are primed to
capture both global structural properties of IDRs and their local
attributes. In this regard, improving the force field accuracy for
IDP simulations remains one of the foremost challenges in IDR
modeling. The flat PES renders IDPs sensitive to force field inac-
curacies, as minor errors can drive sampling far from their native
ensembles (Pietrek et al., 2020). Here, one key avenue to improve
all-atom force field accuracy for IDP simulations rests with pro-
tein–water interactions (solvation) and backbone dihedral terms,
as tuning these interactions leads to improved agreement between
simulations and experiments (Best et al., 2014; Song et al., 2017).
Recent efforts aiming to improve models for continuum solvation
(i.e. ABSINTH (Vitalis and Pappu, 2009)) or capturing main
chain interactions via pseudo-improper-dihedral terms
(Mioduszewski et al., 2020) for IDPs are also promising.
Developing accurate IDP force fields is an ongoing challenge,
and we refer readers to excellent reviews covering the use of
experimental data in IDP force field development
(Chan-Yao-Chong et al., 2019) and strategies for improving
IDP force field accuracy (Mu et al., 2021).

Since the IDRs discussed in this review are adjacent in
sequence to well-folded proteins, a secondary goal in IDP force
field development is to preserve force field accuracy for the folded

constituents. As it has been increasingly realized that many pro-
teins contain both folded and disordered components, developing
force fields that are accurate for both IDPs and folded proteins is
necessary. Mainstream all-atom force fields such as those from
Amber (Weiner et al., 1984) or CHARMM (MacKerell et al.,
1998) initially had difficulties in simultaneously characterizing
IDP and folded proteins, but refinement of the parameters was
shown to be helpful (Robustelli et al., 2018). Similar developments
are in progress for CG force fields like maximum entropy opti-
mized force field (MOFF) (Latham and Zhang, 2021), which
was parameterized against experimentally measured radius of
gyration for IDPs and the folded structures of proteins. This
was found to work well for both IDP and folded proteins
(Latham and Zhang, 2021).

Simulation approaches. Simulation techniques must evolve in
parallel with force field developments. It is increasingly clear
that ensemble properties of isolated IDPs can be characterized
reasonably well by MD simulations coupled with advanced sam-
pling techniques such as REST, HREMD, or with the help of
experimentally guided constraints. However, IDP systems with
higher complexity and degrees of freedom, such as
IDP-mediated LLPS (Garaizar et al., 2020; Shea et al., 2021),
IDP-based extracellular matrix (Clarke and Pappu, 2017) forma-
tion, and IDP-aggregation (Strodel, 2021) still would benefit from
more advanced computational resources. This can take the form
of advanced hardware and chip architectures, much like the
recent GPU revolution in MD simulation. Algorithmic changes,
such as the recent adoption of hydrogen mass reweighting to
increase simulation step size (Hopkins et al., 2015), should be
developed in tandem with hardware advances.

Structural data. In addition to modeling developments that could
improve IDR modeling as a whole, there are new frontiers specific
to the characterization and prediction of MAPID properties. At
the time of this writing, there are few reports describing the
application of computational techniques to the IDRs of the
MAPIDs in Table 1, which renders difficult the probing of the
molecular mechanisms driving myofilament function. A key bar-
rier to these applications has been the lack of structural data for
the well-folded portions of many of these proteins in isolation,
much less in macromolecular complexes like troponin. The con-
figurations of the globular proteins provide important boundary
conditions for disordered domains that are tethered to or between
domains. Furthermore, knowledge of the higher-order structure
of macromolecular complexes is necessary to define the environ-
ment, within which an IDR ensemble samples. Advances in
cryo-EM spectroscopy and SAXS studies of filament and Z-disk
constructions (Sponga et al., 2021; Wang et al., 2021) are quickly
closing this gap. Furthermore, recent advances in ab initio protein
structure programs such as ALPHAFOLD and ROSETTAFOLD are provid-
ing reliable structures for well-folded domains (Baek et al., 2021;
Jumper et al., 2021). In time, these ab initio programs are likely to
achieve similar gains with IDRs of at least isolated proteins.
Strategic combinations of experimental and computational
advances may begin to realize three-dimensional atlases of myo-
filament complexes. Efforts underway in the Tardiff and
Schwarz labs to assemble thin filament proteins based on
cryo-EM structural data (Mason et al., 2021; Deranek et al.,
2022) are already bringing this goal into fruition.

In a similar regard, consideration of auxiliary proteins with
IDRs that regulate myofilament function will be essential to
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understand how the myofilaments adapt to physiological (exer-
cise, pregnancy) and pathological influences (elevated blood pres-
sure, myocardial infarction) (Cornwell et al., 2001; Hamdani
et al., 2008). As an example, CaMKII and CN are both implicated
in pathological cardiac remodeling, predominantly due to impact-
ing gene transcription (Maier and Bers, 2002). However, CaMKII
is additionally reported to phosphorylate titin (Hidalgo et al.,
2013), MyBPC3, and TnI (Tong et al., 2004), which likely impacts
cardiac contractility on a much more rapid basis (Huke and Bers,
2007). Meanwhile, Calcineurin is tethered to the Z-disk via calsar-
cin; and given the fundamental importance of the Z-disk to
mechanosignal transduction (Russell and Solís, 2021), an intrigu-
ing possibility is that the phosphatase may directly impact myofil-
ament function through local PTMs. Both proteins also contain
IDRs (Rumi-Masante et al., 2012; Bhattacharyya et al., 2020)
that regulate their enzymatic functions, which invites the applica-
tion of the IDR modeling techniques we discuss in this review.
Additional proteins include protein kinase A, protein kinase C,
and S100 proteins that are already well-established to impact
myofilament function (de Tombe, 2003; Duarte-Costa et al.,
2014).

Lastly, the computational methods we discuss in this review
almost exclusively deal with dilute environments that are an ide-
alized representation of the cell cytoplasm. Determining how
these proteins behave in cellular structures like the sarcomere
will also be important for understanding myofilament function
and kinetics, as well as the availability of substrates such as
ATP for force generation.

Open questions
Aside from the challenges we outlined in the previous section,
there are a number of open questions with the potential to be
resolved via computer simulation. These include what fraction
of IDRs in the myofilament serves important functional or regu-
latory roles? Is there an evolutionary basis for why IDRs are
broadly distributed throughout myofilament proteins? The high
propensity of IDRs estimated via PONDR would suggest that
there are many molecular mechanisms modulating myofilament
function, so are they all necessary or merely redundant? In addi-
tion, is it possible to determine if only a subset of available con-
formations in an ensemble is important to function? To what
extent do the conformational ensembles of isolated proteins or
complexes behave similarly to their counterparts in higher-order
complexes such as the troponin complex, the Z-disk, or the myo-
fibril? How do we identify which experiments would yield the
most helpful information for characterizing conformation ensem-
bles and constraining conformations for modeling? Among the
unique challenges of myofilaments introduced in the section
‘General challenges in characterizing native IDR structures’, is
the state-of-the-art in experimental characterization sufficient to
determine the important mechanisms of myofilament contraction
or are advances still needed? For diseases that have causative ori-
gins in single nucleotide polymorphisms located in IDRs, can the
severity of an IDR-localized mutation or its potential to be ther-
apeutically corrected be estimated?

Future opportunities
Artificial intelligence-based predictions of MAPID IDRs.
Atomistic simulations in particular have made considerable
advances in enabling the prediction of IDP ensembles.
Nonetheless, given the complexity of these proteins and their
rapid dynamics, routine, brute force simulations of large

disordered regions will remain out of reach for some time. Here
machine learning approaches that have demonstrated success in
predicting the structures of globular proteins, such as ALPHAFOLD

(Jumper et al., 2021) and ROSETTAFOLD (Baek et al., 2021), will
likely follow suit with IDPs. As a recent example (Gupta et al.,
2022), ‘autoencoders’ were informed from short MD simulations
to predict NMR chemical shift and SAXS data. As SAXS and shift
data become increasingly available for MAPIDs, such autoen-
coders could be retrained or refined to improve predictions for
myofilament proteins. It also has been proposed that an IDR’s
sequence encodes more information than just their ensemble
properties (Lindorff-Larsen and Kragelund, 2021). Given that
more than 2000 SLIMs have been identified in IDRs, their inter-
actions to form complex, condensates, and disease-related vari-
ants are also likely to be predicted from the sequences with
advanced machine learning techniques (Lindorff-Larsen and
Kragelund, 2021).

Multi-modal structure determination and modeling. In the last
decade, advances in cryo-EM have afforded high-resolution struc-
tures of macromolecular structures (Bai et al., 2015). A prime
example is the near complete model of the thin filament
(Yamada et al., 2020), as well as the major constituents of the
thick filament (Daneshparvar et al., 2020). These represent
remarkable advancements toward the ambitious goal of a com-
plete reconstruction of the entire sarcomere. Budding efforts to
image the Z-disk to similar resolutions are ongoing (Wang
et al., 2021) and thus it represents the last significant, and likely
most challenging, macromolecular myofilament complex to
resolve. From a modeling standpoint, the availability of compre-
hensive MAPID assemblies will present new challenges. The
immense computational expense of MD simulations already ren-
ders difficult all-atom simulations of isolated proteins at biologi-
cally relevant timescales.

Simulations of the full cardiac thin filament of ∼880 kD com-
prising actin monomers, the troponin complex, and tropomyosin
are limited to tens of ns (Mason et al., 2021; Deranek et al., 2022).
Hence, these detailed simulations represent a billionth of the
duration of a typical 1 s heart beat. For this reason, precise ques-
tions and judicious choice of modeling approaches are important
considerations when seeking to extrapolate molecular predictions
to myofilament function. Especially as more structural data of the
myofilament become available, further development of multiscale
modeling approaches will be necessary to accommodate predic-
tions from disparate simulation approaches suitable for different
system sizes and timescales. Here, efforts to reconstruct dynamic
models of whole-heart function from cell-based descriptors
(Trayanova and Rice, 2011; Niederer et al., 2019; Timmermann
et al., 2019), and myofilament contraction from filament-level
molecular interactions (Fenwick et al., 2017; Powers et al., 2019;
de Winter et al., 2020; Creso and Campbell, 2021; Sharifi et al.,
2021; Kosta et al., 2022), could provide essential guidance toward
the incorporation of molecular-resolution data from a variety of
MAPIDs. Importantly, these approaches represent the first steps
toward combining different data sets that can be conflicting and
overlapping at different resolutions. Generalized approaches
such as the stochastic multiscale model comprising the coarse-
graining of atomic structures followed by BD and Langevin
dynamics (Aboelkassem et al., 2019), could lessen the user bias
in how structures, models, and modeling results are fused.
Similarly, Bayesian approaches could be used to help determine
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model uncertainties for multi-resolution data and where to prior-
itize data collection (Liu et al., 2008).

Liquid–liquid phase transition (LLPS) mediated MAPID func-
tions. Biomolecules can condense into liquid phases, forming
membrane-less organelles or droplets, through the LLPS process
(Shea et al., 2021). LLPS domains are increasingly of interest as
they provide unique microenvironments for biological processes,
such as forming the replication machinery for viruses
(Savastano et al., 2020), providing platforms for protein interac-
tions (Nott et al., 2016), and enriching substrate concentrations
(O’Flynn and Mittag, 2021). IDPs are major players in LLPS,
because IDPs tend to form multi-valent PPIs with themselves
or with other proteins, thus driving LLPS (Harmon et al.,
2017). In the sarcomere, LLPS may also serve an important role
in mediating protein interactions. For instance, Sponga et al.
showed that in the sarcomere, the IDP protein FATZ-1 condenses
into a liquid phase that may provide a mechanism for its interac-
tion with α-actinin (Sponga et al., 2021). Understanding LLPS in
the context of the myofilament is important but is in its infancy,
in part because characterizations of MAPIDs are incomplete, and
the simulation techniques needed to describe this condensed mat-
ter phenomenon are non-trivial. This will improve with more
experimental characterizations of MAPIDs, and computational
tool development.

Genetics. Ultimately, a compelling motivation for understanding
the detailed molecular mechanisms of myofilament function is
to contextualize missense variants of myofilament genes and tai-
lor therapeutic intervention. Prominent gene databases such as
ClinVar (Landrum et al., 2013) and GnomeAD (Karczewski
et al., 2020) have an ever-increasing number of VUSs. The
impacts of variants on myofilament function are diverse in phe-
notype and severity, including the Ca2+ sensitivity of force gener-
ation or relaxation (Chung et al., 2016; Shafaattalab et al., 2019)
that in many cases contribute to cardiac dysfunction (Yar et al.,
2014). Efforts to extrapolate these variants to dysfunctional phe-
notypes via molecular simulations are gaining traction
(Shafaattalab et al., 2019; Mason et al., 2021; Sewanan et al.,
2021).However, detailed simulations of myofilament proteins
and especially their IDRs are computationally intensive. Here,
machine learning approaches again may help extrapolate experi-
mental and simulation data from known variants to de novo var-
iants (reviewed in Kekenes-Huskey et al., 2022). Combining
simulations and experimental characterization of known variants
could be used, together with bioinformatics approaches, to iden-
tify potential druggable protein/protein or protein/SLIM
interactions.

With such developments, we may begin to realize the thera-
peutic potential for controlling or restoring the intrinsic proper-
ties of disordered regions containing pathogenic variants. IDRs
can have both pathological and helpful properties, therefore,
efforts need to target the conformational ensemble members
that primarily promote dysfunction (Uversky, 2020). Progress
has been made in IDR-targeted drug design, as was shown for
P53 to Mdm2 (Uversky, 2020), a cell cycle regulator, and p27
(Iconaru et al., 2015), a small molecule that binds to a transient
IDR site, and the protein tyrosine phosphatase PTP1B, a small
molecule that cooperatively binds an IDR (Krishnan et al.,
2014). Many other IDP-targeting small molecules have been
reported, such as for the c-MyC transcription factor (reviewed
in Ruan et al., 2019). These small molecules can achieve binding

specificity to an IDP through transient interactions, modulating
an IDP’s ensemble properties, and altering protein function
(Chen et al., 2020). Thus far, drug design for IDPs has largely tar-
geted specific sites, such as binding pockets or PPIs (Uversky,
2020)

Regulatory control. As remarked in section ‘Properties of
MAPIDs and their characterization’, phosphorylation represents
one of the most frequently studied PTMs in the myofilament pro-
teins. The PKA, PKC, and CaMKII kinases are among the most
common kinase targets activated in the myofilament, in response
to β-adrenergic, muscarinic, and calcium signaling (Bers, 2001).
In the myofilament, PKA and PKC primarily target troponin
(van der Velden and Stienen, 2019). Interestingly, these kinases
also contain IDPs (Akimoto et al., 2013; Yang and Igumenova,
2013). Opposing the activity of kinases are phosphatases.
Phosphatases including protein phosphatase 1, protein phospha-
tase 2A (van der Velden and Stienen, 2019), and CN
(Rumi-Masante et al., 2012) frequently regulate myofilament pro-
teins. Although phosphatases commonly assume a folded catalytic
domain, their regulatory domains as well as regulator proteins
such as spinophilin contain IDRs (Marsh et al., 2010;
Rumi-Masante et al., 2012).

Understanding regulatory mechanisms controlling the myofil-
ament proteins may therefore benefit from analogous studies of
IDRs in the presence of these phosphatases and kinases.
Conversely, there may be value in recognizing the role of myofil-
ament proteins in modulating regulatory mechanisms. As an
example, CN is modulated by the myofilaments through both
α-actinin and calsarcin, which compete for binding CN (Frey
et al., 2000; Seto et al., 2013).

Concluding remarks

The recent decade has unveiled exciting developments in compu-
tational and experimental techniques toward resolving the struc-
ture and molecular mechanisms of myofilament-associated
proteins and their functions. Despite this, only a small fraction
of proteins from the myofilament have been resolved at atomistic
resolutions. The remaining myofilament proteins have limited
structural information. The reviewed topics of IDR structure pre-
diction, ensemble kinetics, and protein co-assembly will undoubt-
edly provide a basis for characterizing the remaining proteins.
However, continued progress toward advancing techniques to
overcome many limitations will be essential to mapping gene
sequence to function. These advances could help tackle promi-
nent open questions relating to intrinsically disordered proteins
that influence myofilament function and dysfunction.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S003358352300001X.
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